MPSI

POLYNOMES A UNE
INDETERMINEE

« Toutes les équations d’algébre regoivent autant de solutions que la
dénomination de la plus haute quantité le démontre. »
Inventions nouvelles en ’algébre, Albert Girard (1595 - 1632)

Les polynomes font partie des premiers objets apparus dans ’histoire des mathéma-
tiques. On les trouve dés ’époque babylonienne par la description de méthodes de
résolution des équations de degré 2.

Les résolutions des équations de degré supérieur ont beaucoup occupé les scientifiques
de la Renaissance : Cardan, Tartaglia, Ferraro. Elles ont fait ’objet de nombreux
« défis » dans lesquels les mathématiciens se mesuraient I'un & 'autre et démontraient
leur agilité.

C’est au XIX® siecle qu’Abel puis Galois mettent fin & la course aux résolutions
d’équations polynomiales en démontrant que les équations de degré 5 et plus ne sont
en général pas résolubles par radicaux. Les outils qu’ils introduisent pour leur dé-
monstration ouvrent de nouvelles perspectives aux mathématiques et donnent une
impulsion déterminante a 1’algébre.

Les polynémes ont la spécificité de constituer un pont naturel entre I’analyse et
I’algébre, selon qu’ils sont vus comme applications, ou comme objets algébriques.
La démonstration par Gauss du théoréme de d’Alembert-Gauss en est un exemple
éloquent (et hors programme).

Notation : Dans tout le chapitre, K désigne le corps R ou C.

1 L’ANNEAU K[X]
A Définition

Nous allons commencer par définir de fagon algébrique les polynémes. La définition est
un peu déroutante, mais permet de rendre certains résultats complétement triviaux.

‘, Définition 1.1 (Polynéme formel)

On appelle polynéme sur K toute suite de KN stationnaire a 0.

Exemple
La suite (0,1,5,2,9,0,0,3,0,0,0,...) est un polynéme sur R.

Théoréme 1.2 (Identification)

Deux polynomes sont égaux si et seulement si leurs coefficients sont égaux deux a
deux.

Preuve
Découle directement de la définition d’une suite. Si on avait utilisé une définition d’un
polynéme a partir des fonctions polynomiales, un tel résultat reste accessible, mais
s’obtient beaucoup plus difficilement. |

— Notation (Indéterminée X )

Soit P un polynome sur K défini par la suite (a,) € KN stationnaire a 0.
On note alors
“+o00
P=> a.X*
k=0

Lorsque le coefficient a;, est nul, en général on n’écrit pas le terme ap X*.

On note K[X] ’ensemble des polynomes d’indéterminée X sur K.

Explications
Il faut comprendre que ce n’est qu’une notation :

1. X est 'indéterminée. Ce n’est pas un nombre, ni une variable.

2. La puissance de X désigne la place du coefficient dans la suite. A ce stade, il n’y
a aucun rapport avec les puissances entiéres.

3. Malgré la notation, la somme formelle n’est pas infinie car & partir d’'un certain
rang, tous les termes de la suite sont nuls.
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Exemple
Le polynome (0, 1,5,2,9,0,0,3,0,0,0,...) s’écrit également

P=X+5X2+2X%+9X*+3X".

Remarque : On veille & toujours écrire les coefficients par rang croissant ou décroissant
de la puissance de X.

— Définition 1.3 (Polynémes particuliers)

On appelle polynéme nul, le polynéme P = 0.

On appelle polynéme unité, le polynome P = 1.

On appelle mondéme, un polynéme dont un seul coefficient est non nul.
Un polynome est pair, si tous ses coefficients d’indice impair sont nuls.
Un polynoéme est impair, si tous ses coefficients d’indice pair sont nuls.

Exemple
P = 2X5 est un mondme.
P =1-3X?+2X? est un polynéme pair.

— Définition 1.4 (Degré d’un polynome)

On appelle degré du polynéme, 'indice de son dernier coefficient non nul.
On note deg(P) ou 0°P le degré de P.
Par convention deg(0) = —oc.

Le coefficient dominant d’un polyndéme (non nul) est son dernier coefficient non
nul.

Un polyndéme unitaire est un polyndéme de coefficient dominant égal & 1.

Un polyndéme constant est un polynéme nul ou de degré 0.

Exemple
Le degré de —3X® — X2 + 7 est 5, son coefficient dominant est —3.
X4+ X3 — X — 9 est un polynome unitaire.

n
Si on sait que deg P < n, alors on peut écrire P = Z apXk.
k=0

/N\ degP=0% P=0.

Notation

Pour n € N, on note K,,[X] 'ensemble des polynomes de degré inférieur ou égal
an.

A Si P € K,,[X], alors on n’a pas nécessairement deg P = n, mais plutot deg P < n.

B Opérations sur les polynémes

~ Définition 1.5 (Sommes et produits avec les polynomes)

+oo +oo
Soient P = > apX* et Q = Y by X" deux polynoémes de K[X]. Soit A € K.
k=0 k=0
+oo
On définit la somme de P et QQ par P+ Q = Z(ak + b)) X",
k=0
+oo
On définit le produit de P par le scalaire A par AP = Z()\ak)Xk.
k=0
“+o00 k
On définit le produit de P par Q par PQ = Z X avec cp = Z a;by_;.
k=0 i=0

Exemple
SiP=1+2X-3X*% Q=3X+X3+X*—X> et A=2 alors:

P+Q=1+5X+X3-2X* - X5
AP =24+4X —6X%.
PQ= (142X -3XH(3X + X* 4+ X* - X?)
=3X +6X%+ X3 +3X* -8X° —2X°% - 3X7 - 3Xx% 4 3X°.

Explications

Pour la somme et pour le produit avec un scalaire, ces opérations coincident avec les

opérations naturelles sur les suites. Par contre, pour le produit entre deux polynémes,

le produit naturel entre suites consisterait simplement a multiplier entre eux les co-

efficients de méme rang ce qui n’est pas le choix réalisé ici.

En effet, la régle définie pour le produit est celle qui utilise la distributivité par rap-

port au « + » dans laquelle I’exposant de I'indéterminée est identifié & une puissance.

Ce choix est indispensable pour pouvoir ensuite établir un lien intéressant entre les

polyndémes et les fonctions polynomiales comme nous le ferons plus loin.

Construction du coefficient c;.

Le coefficient noté ¢ correspond a tous les produits de termes qui interviennent dans

le monéme X*. Sion « choisit » a; X" dans le premier polynéme, alors il faut le

multiplier par un monéme de degré X*~* pour obtenir un monome de degré X*. On

a donc le terme a;bx_;. Il faut ajouter tous les produits ainsi obtenus & partir des
n

différents coefficients de P. On trouve ¢, = Y a;bi—;.

Ce coefficient peut aussi étre interprété a pz;rt?r d’une somme double.
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Pour deg P = n et deg Q = m, on trouve en effet :

PQ= (zn: aiXi>
i=0

m n o m n+m

ijXj = Zzaib]’Xi-H = Z Z O,iijH_j
j=0 =0 j=0 k=0 i+j=Fk

n+m k

Z Zaibk—iXk
k=0 =0

n+m

= Z Cka.
k=0

On a noté a; =0 pouri >n et a; =0 pour j = m.

Nous avons déja vu plusieurs fagons de calculer une somme double au moment du
chapitre sur sommes et produit. La multiplication polynomiale nous en donne une
derniére : les sommes de Cauchy.

Au lieu de sommer en ligne ou en colonne, on somme en diagonale. Sur chaque
diagonale, la somme i + j est constante : on obtient un monéme. Le polyndéme
produit est la somme de tous ces monomes.

7=0 j=1 j=m-—2|j=m-—1j=m
i=n anbo anby Anbm—1
i=mn—1 an—1bo | an—1b1 p—1bm
* i=3 asbg

— Meéthode (Calcul pratique du produit de deux polynomes)

Pour faire le produit de deux polynomes (ou plus), il est souvent malhabile de faire
un développement « classique » tel que vous le faites depuis le collége.

Il est préférable de faire directement le calcul des ¢y, : choisir les termes dans chaque
parenthése, pour que, multipliés entre eux, ils donnent le bon degré k.

Nous avons déja utilisé ces méthodes de calcul rapide lors de la linéarisa-
tion/délinéarisation en trigonométrie.

Définition 1.6 (Puissance k-iéme d’un polynome)
On définit par récurrence la puissance k-iéme d’un polyndéme P avec
o PO =1,
o Vk >0, Pitl=pPx Pk=pPkxP

Preuve
On montre aisément par récurrence que 'on a bien P* x P = P x PF. |

~ Définition 1.7 (Composée de deux polynomes)

—+oo —+oo

Soient P = > apX"* et Q = Y by X* deux polynomes de K[X]. On définit la
k=0 k=0

composée de @) par P avec

400 400 +o0 k
PoQ= Zaka = Zak <ZbiXi> )
k=0 k=0

=0

Exemple
Soient P =3X2 +7X —1et Q = X% + 1. Calculer P o Q.
Solution :
PoQ=3(X?+1)"+7(X?+1) —1=3X"+13X? +15.

— Théoréme 1.8 (Stabilité des polynomes)

K[X] est stable par somme, par produit avec un scalaire, par produit entre
polyndémes et par composition.
C’est-a-dire que la somme de deux polynémes est un polyndme,

le produit de deux polyndémes est un polyndme,

le produit d’un polynéme par un scalaire est un polynéme,

la composée de deux polyndmes est un polyndéme.

Preuve
La preuve consiste & montrer que les sommes correspondant au résultat sont bien finies
(la suite doit étre stationnaire a 0, sinon ce n’est pas un polynoéme). C’est trivial pour
la somme ou le produit avec un scalaire.
Pour le produit de deux polynoémes, on fera cette preuve avec les degrés un peu plus
loin.
Pour la composition, cela découle du produit. |
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~ Théoréme 1.9 (Structure d’anneau)

e L’opération somme « + » sur les polyndémes est :

— interne : la somme de deux polynoémes est un polynoéme.
— associative. ¥(P, Q1, Q) € (K[X])*, (P+ Q1) + Q2 = P+ (Q1 + Q2).

— admet un élément neutre : 0 € K[X] tel que
VPeK[X],P+0=0+P=P.

— tout polynome admet un opposeé :
VP e K[X], -P € K[X] avec P+ (—P)=(—P)+P=0.

— commutative : ¥(P, Q) € (K[X])>, P+Q=Q+P.
— (K[X], +) est un groupe commutatif (ou abélien).

e [’opération produit« x » sur les polynémes est :

interne : le produit de deux polynoémes est un polynome.
associative. Y(P, Q1, Q2) € (K[X])?, (P x Q1) x Q2 = P x (Q1 x Q3).
— admet un élément unité : 1 € K[X] tel que VP € K[X], Px1 =1xP = P.

distributive par rapport & « + » : V(P, Q1, @Q2) € (K[X])*,
Px(Q1+Q2) =P xQ1+PxQs.

commutative : ¥(P, Q) € (K[X])?, PxQ=Q x P.

— (K[X], +, X) est un anneau commutatif.

d’obtenir facilement des identités sur les coefficients binomiaux.

- Propriété 1.11 (Egalité de Bernoulli)

La formule de Bernoulli est valable sur K[X] :
Soient (P, Q) € (K[X])* et n € N.

prtl QnJrl — (P _ Q) ZPanfk

k=0
Preuve
Comme sur K car le produit entre polynémes commute. |
C Degrés

— Propriété 1.12

Soient P et @, deux polynomes de K[X],

deg(P + Q) < max(deg P, deg @),
deg(PQ) = deg P + deg @,

deg(Po @) =deg P x deg @ pour @ non constant.

Et deg(P+ Q) < max (deg P, deg Q) si, et seulement si P et ) sont de méme degré
avec coefficients dominants opposés.

Remarque : Les différentes structures (groupes, anneaux, corps) seront revues dans
un chapitre spécifique.

Nous verrons également que la structure de K[X] est plus riche que cela, c’est un
espace vectoriel et méme une algébre.

Preuve
Les vérifications sont immédiates. [ |

~ Propriété 1.10 (Formule du binéme de Newton)

La formule du binéme de Newton est valable sur K[X] :
Soient (P,Q) € (K[X])® et n € N.

(P+Q)" = En: (Z) PrQ Tt

k=0

Preuve
Cela provient du fait que le produit entre polynéomes est commutatif. C’est alors ex-
actement la méme preuve que sur K. |

Nous verrons en exercice que cela, joint avec le principe d’identification, permet

Remarque : Lorsqu’un, ou les deux polynémes sont nuls, les relations pour la somme
et le produit restent valables en prenant deg0 = —oo et en appliquant les régles de
calcul sur R.

Preuve
Trivial pour la somme, c’est donné par la formule du cours.
Pour le produit, si P ou @ est nul, le résultat est immédiat.
Si P et @ sont tous deux non nuls, on démontre le résultat en deux étapes (on obtient
légalité par une double inégalité).
On note deg P = n et deg Q = m.
FEtapes de la preuwve.

1. On montre que deg(P Q) < m + n, c’est-a-dire que tous les coefficients d’indice
supérieur sont nuls.

2. On montre que deg(P Q) > m + n, c’est-a-dire que le coefficient d’indice m + n est
non nul.
Rédaction.

1. On commence par montrer deg(P Q) < m+n en vérifiant que pour tout k > m+n+1,
Cr = 0.
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On suppose donc k > m +n + 1, alors

k n
cp = E aibp—_; = E a;bi—; cara; =0 pourz>n+1
i=0 i=0

Z aibgy—; carbg_;, =0pourk—i>m < i<k—m.

i=k—m

Ork>m+n+1,donc k—m >n+1>n donc la somme est vide.
Donc pour k 2m+n—+1, ¢y =0. Donc deg (P Q) < m+n

2. On montre ensuite que Cpmt+rn 7 0.
D’aprés le raisonnement précédent, pour k = m +n, on a

Ch=m—+n = car bp_;, =0pour k—i>m < i<k—-m
i=k—m
n
= Z Aibmtn—i on remplace k par m +n
i=n

Or a, # 0 car deg P = n et by, # 0 car deg Q = m, donc ¢m+n = anbm # 0.
Donc deg(P Q) > m + n.

3. Conclusion : par double inégalité, deg(P Q) = m + n.

e Pour la composition.
D’aprés le cas du produit que 'on vient de prouver, on sait par récurrence immédiate

que deg Q* = kdeg Q.

Ainsi, pour P = 3 a, X",
k=0

deg P o Q = max (kdeg @, ar #0).
Car les degrés sont distincts (Q non constant), donc deg PQ = ndeg Q. |

— Théoréme 1.13

Px@Q=0=P=0ou@=0.
On dit que anneau K[X] est intégre.

— Corollaire 1.14

On peut simplifier par des polynoémes non nuls dans les équations.

Preuve
Voici un exemple qui montre que raisonner avec les degrés peut s’avérer trés efficace :
Par contraposée, si P # 0 et Q # 0, alors deg P € N et deg@Q € N,
ainsi deg P Q) = deg P + deg@Q € N, donc PQ # 0.

Faire la preuve du corollaire en exercice. |

Exemple
Soient P, @ et R trois polynomes de K[X].
Si PR = PQ avec P # 0, alors R = Q.

Théoréme 1.15

Les seuls polynomes inversibles de K[X] sont les constantes non nulles : \.1xk[x],
pour A € K*.

Explications

Cela veut dire qu’il est hors de question de diviser par un polynéme (ou de mettre a
la racine carrée, ou ...).

Les seules opérations que nous ayons définies sur les polynomes sont :

e addition (et soustraction) entre polynomes

e multiplication par une constante,

e multiplication entre polynomes.

e puissances entiéres de polyndmes et compositions entre polyndomes.

Et c’est tout !

Preuve
Analyse :
P est inversible si et seulement s’il existe un polynéme Q tel que PQ = 1.
En particulier P et @@ sont non nuls.
Si on suppose P inversible et ) son inverse, alors

deg P + degQ = deg P Q = deg 1k[x] = 0.

Or deg P € N et degQ € N (car ils sont non nuls), donc la seule solution est deg P =
deg@ = 0.

Donc P est une constante non nulle.

Synthése :

Réciproquement, si P est une constante non nulle A, alors si on pose Q = %, c’est aussi
un polynéme et PQ = 1. Donc P est inversible.

Conclusion : P est inversible si et seulement si c’est une constante non nulle. Son
inverse est alors 'inverse de cette constante dans K. |

Remarque : De méme que on a défini le degré, on pourrait définir la valuation d’un
polynéme qui correspond a I'indice de son premier coefficient non nul. On obtiendrait
alors des propriétés trés similaires a celles du degré et on poserait val(0) = +oo.
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D Dérivation formelle

~ Définition 1.16 (Polyndome dérivé)

Soit P =ag 4+ a1 X + as X? + an_1 X" '+ a, X" un polynéme de K[X].
On définit le polynéme dérivé, P’ par
P =a;+2aX+ -+ (n— 1)an_1X”72 +na, X" L.

Avec les notations des suites :
SiP= (a07a17a27 e aan—lvanvoa e )a
alors P’ = (a1,2a9,- -+ ,(n — 1)ay,—1,na,,0,0,---).

On définit par récurrence la dérivée n-iéme de P par

o PO =p

o Vn € N, Pl = (P = (P(M)",

Par abus de notation, je m’autoriserai & écrire 0 x X! = 0 étant entendu que
I'objet X! n’existe pas.

Ainsi, cette convention personnelle consiste & tolérer son écriture a condition de le
multiplier par 0, et définit un tel objet comme étant le polynéme nul.

Cette petite convention simplifiera les écritures des preuves avec les dérivées.

Remarque : Pour le moment, c’est une dérivation formelle qui n’a aucun lien avec
la dérivation d’une fonction. On rappelle que X n’est pas une variable, mais une
indéterminée.

A On met 'ordre de dérivation entre parenthéses pour ne pas confondre avec la
puissance du polyndme.

Preuve
Il faut montrer la derniére égalité pour la dérivée n-iéme sur les polynoémes :

(P)™ = (p<n))’_

On le démontre par récurrence sur n € N.
Pour n = 0, le résultat est trivial.
On le suppose vérifié a un rang n € N fixé.

Alors (P’)(”'H) - ((P’)W))l _ (P("+1))/, .

~ Propriété 1.17 (Propriétés de la dérivation)
Soient P et @ deux polynomes de K[X] et n € N,
L. (linéarité) (AP + Q)™ = AP 1 Q"
2. e sin<degP, alors deg (P™) = deg P —n,
e sin > deg(P), alors P(™) = 0.

~ Propriété 1.18 (Formule de Leibniz)

Si (P,Q) € (K[X])?, alors
(PQ) =P'Q+ PQ'.

n n
Pour n € N, (PQ)™ =" (Z) PHRQM=k =}~ (Z) pr=R k).

k=0 k=0

Preuve
Pour n = 0, I’égalité est évidente.
Pour n =1 : on pose P = ;r:aaka et Q= Z+°O bp XP.

too +oo +oo +oo
PQ=Sarx* S 6,X7 =305 agb, XEX7.
k=0 p=0 k=0 p=0
+00 +o00
Z Z a;b; (X" XJ )'par linéarité
=0 j=0
+00 +o00 o
= Z Z(Z + j)aiijZ_H_l
i=0 j=0
+o00 +oo . ' V .
=57 (@ Xh)(b,X7) + (aX (b X))
i=0 j=0
+00 +o00 00 +o0 . v
= 2D (X )b X + Zz(ain)(jijH)
#=05=0 =0 j=0
+oo ) +oo .
=) (1@ X"HQ+ P> (jb; X'
i=0 e
=P'Q+ PQ.

On généralise pour n > 1 par récurrence en écrivant (PQ)™ ) = ((PQ)')(R) (a faire en
exercice). ]

Remarque : En algeébre, un opérateur de dérivation est une application additive (en-
tre des ensembles munis des bonnes structures) qui vérifie 'identité de Leibniz. La
dérivation vue jusqu’a présent en est un cas particulier.

Propriété 1.19 (Dérivée d’une composée)
Si (P,Q) € (K[X])?, alors

(PoQ) =Q'x P oQ.

Preuve
Commengons par le montrer par récurrence sur n € N pour P = X",
Pour n =0, on trouve Po@Q =1,donc (PoQ) =0=Q" x P'oQ (car P =0).
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On suppose le résultat vrai & un rang n € N fixé.

On pose P = X", alors (Po @) = (Q""") = (@ x Q") =@ xQ"+Q x (Q") =
Q' xQ"+QxnxQQ" "' =(n+1)Q x Q"

Ce qui démontre le résultat.

Pour généraliser & un polynéme P quelconque, il suffit d’utiliser la linéarité. |

2 ARITHMETIQUE SUR K[X]

A Division euclidienne

~ Théoréme 2.1 (Division euclidienne)

Soient A, B deux polynomes sur K avec B non nul.
Il existe un unique couple (@, R) € (K[X])? tel que

e A=DBQ+R.

e deg R < deg B.

Preuve
unicité : Si A= BQ+ Ret A= BQ'+ R, avec deg R < deg B et deg R’ < deg B.
B(Q—- Q') = R' — R donc par égalité des degrés on a nécessairement deg(Q — Q') = —oo
(sinon le degré du membre de gauche serait strictement supérieur a celui du membre de
droite). Donc Q = Q" et R =R'.
ezistence : par récurrence forte sur le degré de A.
o [nitialisation : sidegB > deg A, on prend Q =0et R = A.
e Hérédité : On suppose le résultat vrai au rang n et on considére A de degré n + 1,
avecn+1 > deg B = p.
On écrit A = an+1X"+1 4+ an X"+ -+ a1X + ao avec ant1 # 0 et B = b XP +
bp—1 XP7h 4o 4+ b1 X + bo avec b, # 0.
Alors A = a;—:lX"Jrlpr + A
On voit immédiatement que deg A1 < n, donc on peut lui appliquer I’hypothése de
récurrence : A; = BQ1 + R avec deg R < deg Q.
D’ot, A= BQ + R avec Q = %X"Hfﬂ + Q1.

Explications

L’existence de la division euclidienne dans K[X] permet de définir une arithmétique
trés proche de celle de Z, avec PGCD, PPCM (non uniques), polynoémes premiers entre
eux... Quelle joie !

On dit que K[X] est un anneau euclidien.

Exemple (Méthode)
Faire la division euclidienne de A = 3X° 4+ 4X? 4+ 1 par B = X2 4+ 2X + 3 en
utilisant la méthode déployée dans la preuve.

Solution :
On pose la division euclidienne comme au primaire pour les entiers. On écrit alors

3X54+4X%4+1 | X?2+2X+3

On s’intéresse aux coefficients dominants et on voit qu'il faut multiplier X2 par 3X°
pour obtenir 3X5.
On obtient alors :

3X° +4X* 41| X?+2X +3
—(3X° 4+6X* +9X?) 3X
—6X* —9X° +4Xx? +1
On continue ainsi : & ’étape suivant, on rajoute —6X 2 au quotient pour annuler le terme —6X*
.. et ainsi de suite.

3X° +4X7 +1| X2 +2X+3
—(3X° +6X*  +9X°) 3X°-6X7+3X +16
—6X*T  —9X°  +4X? +1
—(—6X* —12X3 —18X?)
3X° +22X°7 +1

—(3X®  +6X? +9X)
6X7  —9X  +1
—(16X° +32X +48)
—41X 47

On trouve alors

3X° 44X +1=(X?+2X +3) (3X° — 6X%t + 3X +16) — 41X —47.

B Divisibilité

Dés lors qu’on posséde la division euclidienne et la relation de divisibilité, on peut
construire une arithmétique sur K[X] a Uinstar de ce qui a été fait sur Z.

On va donc faire un gigantesque « copier-coller » a partir du cours d’arithmétique
sur Z.

Les preuves sont trés similaires au cas entier et il est donc conseillé au lecteur de les
rédiger par lui-méme en révision du chapitre d’arithmétique sur Z.

Définition 2.2 (Divisibilité)

Pour (A, B) € (K[X])Q, on dit que B divise A s’il existe @ € K[X] tel que A = BQ.
On le note B|A.
On dit que aussi que A est un multiple de B.

Remarque : B divise A si, et seulement si le reste de la division euclidienne de A par
B est nul.

Définition 2.3 (Polynémes associés)

Deux polynémes P et @ sont associés sur K si, et seulement s’il existe A € K* tel
que P = \Q.
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’r Propriété 2.4

P|Q et Q|P si, et seulement si P et @) sont associés.

Preuve
Si Q =0, alors P =0 car Q|P et les polyndmes sont bien associés.
Sinon, comme P|Q alors deg @ > deg P (relation sur les degrés pour le produit), et par
symétrie, comme Q|P, alors deg P > deg Q.
Donc P et @ sont de méme degré. L’égalité P = AQ donne donc que deg A = 0,
c’est-a-dire A € K : les polyndmes sont associés. |

Propriété 2.5

La relation de divisibilité est réflexive et transitive sur K[X].
C’est une relation d’ordre (partielle) sur I’ensemble des polynémes unitaires ou nuls
de K[X].

Preuve
Réflexivité : immeédiat car P =1 x P.
Transitivité : pas plus dur : si P|Q et Q|R alors il existe des polynomes A et B tels
que Q = AP et R = BQ, donc R = ABP, avec AB € K[X]. Ainsi P|R.
Si on ne considére que les polyndémes unitaires ou nuls, la relation est aussi transitive
d’aprés la propriété précédente (les polyndmes sont associés, mais le coefficient multi-
plicateur est nécessairement 1 par égalité des coefficients dominants). |

Propriété 2.6 (Propriété de la divisibilité)
e Si P|Q; et P|Q2, alors pour tous polynomes U et V, P[UQ; + VQs.
e Si Pi|Q; et P»|Q2 alors P P2 |Q1Qs.

e Si P|Q et n € N, alors P™|Q™.

Preuve

Immeédiat : a faire en exercice. |

C Algorithme d’Euclide

Définition 2.7 (Diviseur commun)

Soient Ay, Ag, --
D est un diviseur commun a Aq, As, ---

[1, n].

-, A, sont n polynémes non tous nuls.
, A, ¢’ll divise tous les Ay pour k €

Définition 2.8 (Plus grand diviseur commun)

Soient A et B deux polynémes non tous les deux nuls.

Un plus grand diviseur commun & A et B est un diviseur commun a4 A et B de
degré maximal.

On dit alors que c¢’est un PGCD de A et B.

A Il y a plusieurs PGCD (contrairement a 'arithmétique dans Z). C’est la raison
pour laquelle, on parle d’un plus grand diviseur commun et non du plus grand diviseur
commun.

On va voir que les plus grands diviseurs communs sont associés entre eux.

Preuve
E ={deg D, D € K[X]\ {0} tel que D|A, D|B} est une partie non vide majorée de N.
En effet, 1 est un diviseur non nul commun & A et B, donc 0 € E, et tout diviseur
commun & A et B est de degré inférieur' & max (deg A, deg B) .
Donc E admet un plus grand élément, ce qui prouve l'existence de plus grands diviseurs

communs aux Pi, -+, P, au sens de la définition.
Nous verrons plus loin que nous pouvons dire beaucoup plus sur ces diviseurs, mais ce
sera plus facile aprés algorithme d’Euclide. |

- Propriété 2.9

Soient A, B deux polyndmes non tous les deux nuls, et @ et R dans K[X] tels que
A= BQ + R. Alors

Les diviseurs de A et B sont les mémes que ceux de B et R.

En particulier

A et B ont les mémes PGCD que B et R.

Preuve
Si D|A et D|B alors D|A — BQ = R, donc D|B et D|R.
Réciproquement si D|B et D|R alors D|BQ + R = A, donc D|A et DI|R. [ |

1. Si A et B sont non nuls, il est inférieurs & chacun de leurs degrés, le fait de considérer le
maximum évite de traiter a part le cas ou I'un des deux polyndémes est nul.
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— Théoréme 2.10 (Algorithme d’Fuclide)

Soit (A, B) € (K[X]\{0})?, on note R_; = A et Ry = B, et on définit la
suite (Ry), N Par :
Vn € N,

e si R, # 0, alors R, 11 est le reste de la division euclidienne de R,,_; par R,.
e si R, =0, alors R,,+; =0.

La suite est stationnaire & 0.

Ainsi, il existe un rang ng > 1 tel que R,,,—1 # 0 et R,, =0.
On a alors R,,_1 qui est un plus grand diviseur commun a A et B.

Preuve
C’est le méme raisonnement que pour Z en observant la décroissance des degrés.
D’apreés la propriété, on montre par récurrence sur k € [0, no] que les diviseurs communs
a A et B sont les mémes que les diviseurs communs & Ri_1 et Ry (tant que Rx—1 # 0,
c’est-a-dire k < no, sinon Ry n’est plus défini & partir d’une division euclidienne et la
propriété précédente ne s’applique plus).
On obtient donc au rang ng que A et B ont les mémes diviseurs que R,,—1 €t Ry,.
Or Ry, = 0 est divisible par tous les polynémes, donc les diviseurs communs cherchés
sont exactement les diviseurs de Rpn,—1.
En particulier Rp,—1 est un pGoD de A et B. [ |

Remarque : On voit que si deg A < deg B, alors la premiére étape consiste a échanger A
et B.

D PGCD

~- Théoréme 2.11 (PGCD)
Soient A et B deux polynémes non tous nuls.
e Tous les plus grands diviseurs communs & A et B sont associés entre eux.
e [l existe un unique diviseur commun unitaire que ’on note A A B.

e D est un plus grand diviseur commun & A et B si, et seulement si D est
un diviseur commun a A et B et si tout diviseur commun a A et B divise
également D.

(les plus grands diviseurs communs sont donc des éléments maximaux pour la
relation de divisibilité).

Par convention, 0 A0 = 0.

Preuve

e On observe trivialement que si D est un plus grand diviseur commun alors tous les

polyndémes qui lui sont associés sont aussi plus grands diviseurs communs.
Réciproquement, si A est un diviseur de degré maximal, nous avons vu, lors de
lalgorithme d’Euclide, que A|Rn,—1 et qu’il est de méme degré.

Donc A est associé & Rn,—1, ce qui montre bien que tous les plus grands diviseurs
sont associés entre eux, et qu’il en existe un unique unitaire.

e Avec 'algorithme d’Euclide, on montre de méme que tout diviseur commun & A, B est
diviseur de Ry,—1, donc diviseur du PGCD.

|
— Propriété 2.12
Soit (4, B) € (K[X])*.
Si A= BQ+ R avec (Q, R) € K[X] x K[X]\ {0}, alors AANB=BAR.
~ Théoréme 2.13 (Relation de Bézout)
Soient A et B deux polynomes non tous les deux nuls,
3(U, V) € (K[X])?, AU + BV = A\ B.
Preuve
Gréace a ’algorithme d’Euclide étendu comme en arithmétique sur Z. |

A Les polynémes U et V ne sont pas définis de fagon unique.

— Définition 2.14 (Polynomes premiers entre euz)

Deux polynomes A et B non tous les deux nuls sont dits premiers entre eux, si

ANB=1.

- Propriété 2.15

Deux polynomes sont premiers entre eux si leurs seuls diviseurs communs sont les
constantes non nulles.

Exemple
(X — @) est premier avec X — [ si, et seulement si o # .
Solution :
Si a = B, alors (X — «) est un divisieur commun non constant, donc ils ne sont pas
premiers entre eux.
Si a # S, alors on note D un diviseur commun & X — a et X — 3.
On peut donc écrire (X — a) = DQ;.
Si par 'absurde D non constant, alors deg @1 = 0 donc X — a et D sont associés.
De la méme maniére X — 3 et D sont aussi associés. On peut donc écrire D = A(X —a) =
w(X — B) avec (X, u) € K?. Mais par identification des coefficients, la seule solution est
alors =X =0. Donc (X —a) A (X — ) =1.
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Théoréme 2.16 (Théoréme de Bézout)}

Soient A et B deux polynémes non tous les deux nuls,

AAB=1 < 3(U, V) e (K[X])*, AU + BV = 1.

— Définition 2.17

Soient Py, P, -+, P,, n polynémes non nuls.

e P, P, ---, P, sont premiers entre eux deux a deux si
V(i, j) €1, n]* i#j=PAP; =1.
o P, P, ---, P, sont premiers entre eux dans leur ensemble si leurs seuls

diviseurs communs sont les constantes non nulles.

— Définition 2.18 (PGCD d’une famille de polyndémes)

Soient (A1, Ag, -+, Ay), n polyndmes non tous nuls.

1. Tout diviseur commun & Ay, - -
diviseur commun.
Il existe un plus grand diviseur commun unitaire appelé le PGCD et noté A; A
Ay A=A A,.

-, A, de degré maximal est appelé plus grand

2. L’ensemble des plus grands diviseurs communs est ’ensemble des polyndémes

associés au PGCD.
3. D est un plus grand diviseur commun & Ay, ---, A, si, et seulement si

e D est un diviseur commun & Ay, -, A,.

e Tout diviseur commun & Ay, ---, A, est également diviseur de D.

Remarque : Des polyndmes sont premiers entre eux dans leur ensemble si, et seule-
ment si leur PGCD est égal & 1.

Preuve
On utilise la preuve dite « plus algébrique » dans le cours d’arithmétique sur Z. L’approche
est moins naturelle, mais plus simple a conduire. Elle part de la relation de Bézout au
lieu de la voir comme conséquence.
On note

E=AK[X]|+ AK[X]+ -+ A, K[X]

= {A1U1 +A2U2 + -+ AnU’m (Ula U27 T U’ﬂ) € (K[X])n}

E est non vide et {deg P, P € E'\ {0}} est une partie non vide de N qui admet donc
un plus petit élément.
Soit D € E de degré égal & ce minimum, que I’on peut choisir unitaire.

e Montrons que D est un diviseur commun & tous les éléments de F.
Soit ¢ € [1, n], on peut alors réaliser la division euclidienne A; = DQ;+R; avec deg R; <
deg D.
Mais en utilisant la définition de F/, on voit immédiatement que R; € F.
Par minimalité du degré de D, on a donc R; = 0, donc D divise A;.
Donc D est un diviseur commun & Aq, -+, An.

e Montrons que tout diviseur commun est diviseur de D.
C’est évident, car si P|A1, P|Ag, -+, P|A, alors pour tous polynémes Uy, Us, -+, Un,
P|AU; + AUz + - - - + AU,
Donc P divise tous les éléments de E, donc P|D.
Ceci montre en particulier que D est un diviseur commun de degré maximal (la di-
visibilité donne 'inégalité des degrés).
Il est évident que si D est un plus grand diviseur commun, alors tous les polynémes
qui lui sont associés, le sont aussi. Il existe donc un plus grand diviseur commun
unitaire.

e Unicité du PGCD : Si D1 et Dy convenaient, alors on vient de voir que D1|D2 et
D, |D; par symétrie des roles, donc Dy et Dy associés.
Or comme ils sont supposés unitaires, ils sont égaux.

|
~ Propriété 2.19 (Relation de Bézout)
Soient (A1, Asg, ---, Ay), n polyndmes non tous nuls.
Il existe (Uy, U, -+ ., Uy,) € (K[X])" tel que
n
S AU = AL A A A,
k=1
Preuve
Directement a partir de la preuve précédente. |
E PPCM

Définition 2.20 (PPCM)

Soient Ay, A, ---, A,, n polynémes.
M est un multiple commun & A, Ay, ---
pour k € [1, n].

, Ay s’il est multiple de tous les Ay

La preuve pour les plus petits communs multiples pour deux ou davantage de polynémes
est strictement identique.
Aussi, pour ne pas surcharger inutilement ce cours, nous donnons directement le

théoréme et la preuve pour n > 2 polynémes.
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— Définition 2.21 (PPcM d’une famille de polynomes)

Soient (A1, Ag, -+, Ay), n polynomes

1. Tout multiple commun & Ay, ---, A, de degré entier minimal est appelé plus
petit multiple commun
(et 8’1l n’existe pas, le polyndome nul).
Il existe un plus petit multiple commun unitaire ou nul appelé le PPCM et
noté Ay VAV ---VA,.

2. L’ensemble des plus petits multiples communs est I’ensemble des polyndémes
associés au PPCM.

3. M est un plus petit multiple commun a Ay, --- , A, si, et seulement si
e M est un multiple commun & Ay, -, A,.
e Tout multiple commun & Ay, ---, A, est également multiple de M.
Preuve

On suppose tous les A; non nuls.

On considére Pensemble £ = A, K[X] N AK[X]N---NAK[X].

FE désigne 'ensemble des multiples communs & Ay, ---, A,.

E est non vide et non réduit a 0 (il contient le produit des A;).

Soit M un polynéme de E de degré entier minimal (I’existence est immédiate).

Alors M est un multiple commun & A;, ---, A,. Tous ses polyndmes associés sont aussi
dans F, donc on peut choisir M unitaire.

Soit P un autre multiple commun. On effectue la division euclidienne P = MQ + R
avec deg R < deg M.

P et M étant multiples communs, R l’est aussi.

Mais par minimalité du degré de M, on a donc R = 0.

Donc P est multiple de M. |

— Propriété 2.22 (Propriétés du PGCD et du PPCM)

Si A et B sont deux polynémes non tous les deux nuls, alors

1. (commutativité)

ANB=BANA e AVB=BVA.

2. (insensible au produit par un facteur non nul) ¥\ € K*,

(M)AB=AAB et (M)VB=AVB.

F Polynémes irréductibles

Définition 2.23

Un polynéme non constant est dit irréductible si ses seuls diviseurs sont ses
polynoémes associés et les constantes.

Remarque : Les polyndémes constants ne sont pas irréductibles.
Nous verrons que l'irréductibilité d’un polynéme peut dépendre du corps K choisi.

Théoréme 2.24 (Lemme de Gauss)}

Soit (4, B, C) e (K[X]\ {0})*.

Si A|[BC et ANC =1, alors A|B.

Preuve
En utilisant Bézout comme dans Z. [ |

Théoréme 2.25 |

Soit (Py, Py, A) € (K[X]\ {0})>. Si Pi|A, Py|A et si Py A Py =1, alors PP A.

Preuve
Avec Bézout PLU + P,V =1, donc Py AU + P,AV = A.
Or, PIQ1 = A et P,Q2 = A, donc en remplagant on trouve

PLP;Q2U + PLPQ1V = A.
ce qui donne le résultat voulu. |

— Théoréme 2.26 (Décomposition en produit d’irréductibles)

Tout polynoéme non nul de K[X] s’écrit de maniére unique (a l'ordre prés) comme
produit d’irréductibles unitaires et d’'une constante.

k
pP=x[Te
=0

avec A € K* et les ; sont des polynoémes irréductibles unitaires.

Remarque : La caractére unitaire des polyndémes permet d’avoir 'unicité.

Preuve
unicité : On suppose deux décompositions

k P
>\1HQi = )\QHP]‘.
i=0 j=0
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On peut simplifier les @Q; et les P; qui sont commun

Soit Q; dans la décomposition. Alors @Q; divise A2 H P;.

Or, il est immédiat que pour tout j € [0, p], Ql A P 1 (s’ils avaient un diviseur
commun de degré supérieur ou égal & 1, alors ce ne pourralt étre que P; car irréductible,
et aussi @Q; car irréductible. C’est impossible car ils sont unitaires et différents).

Ainsi, par application successive du lemme de Gauss, Q;|A2 ce qui est absurde.

Donc la décomposition est unique.

existence : On montre 'existence par récurrence (forte) sur le degré de P.

Pour deg P = 0, le résultat est trivial.

On suppose le résultat vérifié pour deg P < n

Sideg P =n+1.

e Soit P est irréductible et le théoréme est vérifié.

e Soit P n’est pas irréductible et il existe @1 et Q2 dans K[z] de degré supérieur a
1 tels que P = Q1Q2.
Alors deg @1 < n et deg Q2 < n (d’apreés la formule du degré d’un produit).
Donc @1 et Q2 se décomposent comme produit d’irréductibles sur K[X].
Donc P également.

Exemple
Donner la décomposition en produit d’irréductibles de P = 2X° — 2X*4.

3 FONCTIONS POLYNOMIALES

— Définition 3.1

Soit P = 2 ap X" € K[X].

=0
On appelle application polynomiale associée & P, ’application :

R — K
P n

o= Y apah.
k=0

Remarque : Par abus de langage, on confond parfois polynéme et fonction polynomiale
mais il faut comprendre la différence entre ces deux objets.

- Propriété 3.2

Pour tous polynomes P et @ de K[X], et pour tout A € K
P+Q= P+@

AP = )\P

P x Q P x Q,

POQ PoQ,
P/_P/

Remarque : dans la suite, on omettra généralement le signe « tilde » et on identifera

P et P: le contexte indiquera s’il s’agit du polynéme ou de la fonction polynomiale
associée.

Un tel abus de notation sera mieux légitimé lors de 'expression du lien bijectif entre
polynémes et fonctions polynomiales, plus loin dans ce chapitre.

4 RACINES

A Racines et factorisation

— Théoréme 4.1 (Formule de Taylor)
Soit P € K[X] et a € K,

- Z p(k) )

La somme est finie et s’arréte au coefficient égal au degré de P.

Remarque : « est quelconque, ce n’est pas nécessairement une racine de P.

Preuve
On procéde par récurrence sur le degré du polynome.
Pour P constant, la relation est immeédiate.
On suppose la relation au rang n € N, et on la montre au rang n—+ 1.

On considére donc P de degré n + 1 et on pose Q = P — Z m(X a)k.

Or deg P’ = n, donc on peut lui appliquer I’hypothése de récurrence ce qui donne

n 7y (k) ntl p(k)
N (P) () k_ N~ PY(a) k-1
PEd o et = oy et
k=0 k=1
Ainsi, on retrouve I’expression précédente et on a donc Q' = 0.
Donc @ est constant, et vaut Q(a) = P(a) — P(a) = 0. Ceci montre la relation au

rang n + 1. | ]

Propriété 4.2 (Unicité de la décomposition)
La décomposition pour la formule de Taylor est unique.

“+o0o
SiaeKet PcK[X]tel que P = ap(X —a)*, alors Vk € N, P*)(a) = klay.
k=0

Preuve

+oo
3 apX* et on utilise Punicité de la décomposition sur
k=0
la famille (X*)ren (principe d’identification). |

On remarque que P(X + ) =
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— Définition 4.3 (Racine d’un polynéme)

On dit que a € K est une racine de P si, et seulement si ﬁ(a) =0.

- Lemme 4.4

Pour P € K[X] et a € K,
le reste de la division euclidienne de P par X — « est P(a).

Preuve
On réalise la division euclidienne : P = (X — a)Q + R avec deg R < 1, donc R € K.
En évaluant en « on trouve alors R = P(«). [ |

Théoréme 4.5 (Lien entre racines et factorisation)}

« est une racine de P sur K si, et seulement si X — « divise P.

Preuve

(sens réciproque) si (X — a) divise P, alors P = (X — a)Q.

Donc P(a) =0 x Q(a) = 0.

(sens direct) d’apreés le lemme. [ |
Explications

Trouver les racines d’un polynome sur K ou le factoriser revient au méme. Si on trouve
des racines évidentes d’un polynome, cela donne une factorisation. Nous avons déja
utilisé cette méthode.

Exemple
Factoriser P = X* —2X3 — 16 X2+ 2 X + 15.
Solution :
1 est racine évidente, donc on peut factoriser par X — 1 :

P=(X-1)(X*-X?>-17X —15)
—1 est racine évidente, donc on peut factoriser par X + 1 :
P=(X-1)(X+1)(X*>-2X —15).

On trouve ensuite deux racines —3 et 5 soit par essais, soit avec le calcul du discrimi-
nant A. Donc P = (X — 1)(X 4+ 1)(X + 3)(X — 5).

Définition 4.6 (Multiplicité d’une racine)

Si « est racine de P, alors sa multiplicité est égale au plus grand entier m tel que
P(a) = P'(a) = ...= P V(a) = 0.

Par abus, si P(a) # 0, on dit que « est racine de multiplicité 0.

Remarque : m est le plus grand entier, ce qui suppose que P(m)(a) # 0.

Exemple

Pour un polynéme du second degré, on a une racine double « lorsque A = 0.
Dans ce cas, on a bien P(a) = P'(a) =0, et P"(a) # 0.

En effet, la courbe est tangente a 1’axe des abscisses en «. Elle s’annule donc en
« et sa dérivée est nulle en ce point (minimum avec tangente horizontale).

Théoréme 4.7 (Racine multiple et factorisation)

« est une racine de P de multiplicité m sur K si, et seulement si (X —a)™ divise P et
(X — a)™*! ne divise pas P.

Preuve
On applique la formule de Taylor & P en « et on l'interpréte comme une division
euclidienne :
+oo k
pC )(oc)
P=>Y" o (X - a)”
k=0
m—1 +oo
p(k)(a) p(k)(a)
- mo Xt po X
k=0 k=m
>0
m—1 +oo —
P® (o m P® (o T —
k=0 k=m
Ro Qo

Et au rang m, on trouve aussi

>0

™ pk) (g . == p®(y t—m—1
P=>" k!( ) (X — ) +(X — o)™+ > k!( J(x —apf—m-1,
k=0 k=m+1

Ry Q1

Par unicité de la division euclidienne, on voit que Rop et R; sont respectivement les
restes des divisions euclidiennes de P par (X — a)™ et par (X —a)™"!.
On peut alors écrire

Yk € [0, m — 1], P (a) =0
P (a) #0,

Ro=0
<
Ry #0,

— {(X —a)™|P

a racine de multiplicité m <= {

(X —a)™* yP

La premiére équivalence (sens réciproque) provient de 'unicité de la décomposition en
somme de Taylor énoncée au théoréme 4.2.
La somme Ry est nulle si, et seulement si Vk € [0, m — 1], P®(q) =0. [ |
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Exemple
0 est racine triple (de multiplicité 3) de X7 — 3X° +2X* — X3.

- Propriété 4.8

Soit P € K[X], alors si a1, a1, -+ - , vy sONt 1 racines distinctes de P de multiplicités
mi, Mo, -+ , My, alors
P divisible par (X —a1)™ (X —ag)™ (X —ayn)™.
Preuve

Par récurrence sur n.
Pour passer de n & n + 1, on utilise le fait que (X —aq)™ -+ (X — an)™" est premier
avec (X — an41)"t! et le théoréme 2.25. [ |

Corollaire 4.9

— Meéthode (Montrer qu’un polynéme est nul)

Pour montrer qu'un polynéme est nul, on peut au choix :
1. montrer que tous ses coefficients sont nuls,
2. montrer qu’il admet une infinité de racines,
3. montrer qu’il admet plus de racines que son degré,
4. montrer que son degré ne peut étre un nombre entier.

= on raisonne souvent par I’absurde pour montrer qu'un polyndéme est nul.

Le nombre de racines (comptées avec leur multiplicité) d’un polynoéme non nul est
inférieur ou égal & son degré.
Seul le polynome nul admet une infinité de racines.

Explications

Ce théoréme n’affirme pas qu’il existe autant de racines que le degré (c’est vrai sur C
comme le donnera le théoréme de d’Alembert-Gauss, mais en général faux sur R).
Il donne simplement un majorant du nombre de racines.

Cependant, si on obtient autant de racines que le degré, cela permet d’affirmer, sans
autres vérifications, qu’on les a toutes trouvées.

Exemple (Rappel)
Factoriser X™ — 1 sur C.
Solution :
La factorisation revient & chercher les solutions de ’équation z™ = 1.
On retrouve les racines n-i émes de 'unité :
1}

2ik
{e

Ces racines sont deux a deux distinctes et il y en a autant que le degré, donc ce sont
les seules.
Comme le coefficient dominant est 1, on obtient donc :

n—1

X"—I:Z(Xfe%).

k=0

Exemple
Soient P et @ deux applications polynomiales.
S’il existe « € R tel que 13(1) = @(x), cela entraine-t-il que P =Q 7
il existe a < b tels que Yz €]a, b], P(z) = Q(x), cela entraine-t-il que P = Q ?

—I Théoréme 4.10 (Lien bijectif entre les polynomes et les applications polynomiales) |

L’application
p KX] — P(K)
P — P

réalise une bijection entre entre K[X] et I’ensemble des fonctions polynomiales
sur K.

Cette application est un morphisme pour les lois +, X, -, o et pour 'opérateur de
dérivation :

(P +Q) = 9(P) +6(Q),
(P x Q) = ¢(P) x ¢(Q),
P(AP) = Ao (P),

(

(

PoQ)=¢(P)o¢(Q),
P') = (¢(P))".

Explications

C’est un THEOREME CLEF. C’est lui qui permet de faire le lien entre les polynomes
et les applications polynomiales, c’est-a-dire entre ’algébre et ’analyse.

Il justifie que 'on peut utiliser I’analyse pour démontrer des résultats d’algebre et
réciproquement.

Preuve
Surjectivité : trivial du fait de la définition de P(K).
Injectivité : la différence des deux polynomes antécédents a une infinité de racines.
Donc elle est nulle. Donc chaque application polynomiale a un unique antécédent. W
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Propriété 4.11

Un polynoéme est pair si, et seulement si sa fonction polynomiale est paire.
Un polynoéme est impair si, et seulement si sa fonction polynomiale est impaire.

Preuve
Le sens direct est évident. Montrons le sens réciproque pour le cas pair.

+oo

Si on note P = 3 axX* alors pour tout z € R P(z) = P(—z), ainsi P(X) — P(—X)
k=0

admet une infinité de racines donc est le polynéme nul.

On obtient donc P(X) = P(—X) c’est-a-dire
+oo n
> anx® =3 (-1ra X"
k=0 k=0

Donc par identification :
VE € 2N + 1, aj, = 0.

Exemple (Algorithme de Horner)

n n
Soit P = " axX*. Pour évaluer P(z), on peut calculer simplement P = 3 azz*
k=0 k=0
mais cela demande de calculer toutes les puissances de x et s’avére rarement op-

timal.

Horner a proposé une autre méthode qui s’appuie sur ’idée selon laquelle on peut
calculer les puissances de x, non séparément, mais en s’utilisant & chaque fois de
la puissance précédente.

Prenons un exemple :

Pour 322 — 2z + 4, on peut faire 3z — 2, puis on multiplie par x et on ajoute 4,
ce qui donne (3x — 2) z + 4, ce qui est le résultat voulu.

Plus généralement pour P, on calcule

bp—1 = apT + an_1
bp—2 =bp_12 + an_2

bp_3 = bp_2x +an_3

bo = bix + ag

On a alors by = P(x).

)

B Théoréme de d’Alembert-Gauss

~ Définition 4.12 (Polyndéme scindé)

Un polyndme est scindé s’il peut s’écrire comme produit de polynoémes unitaires
de degré 1 et d’un coefficient constant.

Remarque : Les polynémes constants sont scindés.

—I Théoréme 4.13 (d’Alembert-Gauss - Théoréme fondamental de ’algébre) '—

Tout polynoéme est scindé sur C.

Autre formulation : Tout polyndme non constant admet au moins une racine sur C.
Autre formulation : Les seuls polynémes irréductibles sur C sont les polynomes de
degré 1.

Preuve
Admis - curieusement pour démontrer le théoréme fondamental de I’algébre, on a besoin
de ’analyse. |

A C’est faux sur R[X], par exemple X2 + 1 est irréductible sur R, mais pas sur C.

C Polyndmes interpolateurs de Lagrange

Dans cette partie, il est important non seulement de connaitre les résultats, mais de
savoir les retrouver.

Notation (Symbole de Kronecker)

On définit le symbole de Kronecker par :

o 1 siit=j
v(l7])€N255i,j:{ .
0 sinon.

~ Propriété 4.14 (Polyndmes interpolateurs de Lagrange)

Soient n € N, (21,22, - ,x,) € K" deux a deux distincts.
Pour tout j € [1, n], il existe un unique polynéme L; € K,,_1[X] tel que

Vi € H]., n]], LJ($1) = 5i,j'

L; est le j-iéme polyndme interpolateur de Lagrange.
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Preuve
Analyse : unicité.
Soit P un tel polyndme, alors, il admet n — 1 racines : {x;, @ # j}.
Donc il est divisible par [](X — ;) (les x; sont deux a deux distincts).
iA]
On peut donc écrire P = Q [[ (X — ;) avec Q € K[X].
]
Mais deg P < n — 1, donc @ est une constante.

Or P(z;) =1, donc cette constante est égale a ﬁ
J i
i#]
Si le polynoéme existe, alors il est défini de fagon unique et son expression est

L=l
J_, ,l’j—l’i.
i#£]

Syntheése : réciproquement, il est évident qu’un tel polynéme convient. |

Propriété 4.15

Avec les notations précédentes :

X — -
Vieﬂl,n]],Lj:Hri ot Y Lj=1
it ol j=1

Preuve
L’expression de L; a été obtenue & la preuve précédente.
n
Sionnote P= Y L;j—1, alorsdegP <n—1, et Vj € [1, n], P(z;) =0.
=1

=
Donc P admet au moins n racines distinctes, donc P est le polyndéme nul. |

— Théoréme 4.16

Soient n € N, (1,22, -+ ,x,) € K" deux a deux distincts.
Soit (yla Y2, 000y yn) e K".
11 existe un unique polynome P € K,,_1[X] tel que

Vi e H]-v n]]7 P(mz) = Y-

Ce polynéme est donné par

P = ZijJ
j=1

Preuve (a savoir refaire)
Unicité : Si on considére deux polynomes vérifiant les hypothéses : P et @, alors
P — @ admet n racines distinctes (les z; ) et est de degré inférieur ou égal a n — 1.
Donc c’est le polynéme nul, donc P = @, d’ou 'unicité.
Ezistence :  On voit directement que ’expression donnée dans le théoréme convient.
|

- Propriété 4.17

Avec les notations précédentes, tout polynome P € K,,_1[X] se décompose de fagon
unique comme combinaison linéaire des L;.

VP € Kn 1[X], ar, ag, -+, an) €K™, P = oL,
j=1

Preuve
Unicité : On suppose que P s’écrit sous deux formes avec (ai, - -, a,) € K" et
(ﬁla Tty ﬁn) e K"
alors

i=1 i=1

En particulier, si on évalue en z; on trouve a; = ;.

Ceci étant pour tous les j € [1, n], onaVj € [1, n], a; = 5, d’ott 'unicité de Décriture.
Ezistence : Si on note pour tout j € [1, n], y; = P(z;), alors le théoréme précédent
permet de trouver la forme qui convient :

P=>"P(z;)L;.
j=1

On verra plus tard que 'on dit que les polynémes de Lagrange forment une base
de K,,_1[X].

~ Théoréme 4.18 (Cas général)

Soient n € N, (1,22, - ,x,) € K" deux a deux distincts.

Soit (yla Y2, -y yn) e K"
Les polynoémes P € K[X] vérifiant Vi € [1, n], P(z;) = y;, sont exactement les
polynémes

n n
P=> yLi+Q[[(X —=)),
j=1 j=1

pour @ décrivant K[X].

Preuve
Il est évident que les polynémes donnés conviennent. Montrons que ce sont les seuls.

Si on note P un tel polynome, alors P — Y y;L; s’annule en tous les z;, donc est
j=1
divisible par [] (X — z;) ce qui donne bien la forme voulue. [ ]
j=1
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D Polyndomes réels

Propriété 4.19

Soit (A, B) € R[X] avec B non nul.
Le quotient et le reste de la division euclidienne de A par B est le méme dans C[X]
et dans R[X].

Preuve

Par unicité de la division euclidienne dans C. [ |

Propriété 4.20

Si (A, B) € R[X], tous deux non nuls.
A|B dans R[X] si, et seulement si A|B dans C[X].

Preuve

Utiliser 'unicité de la division euclidienne. [ |

Propriété 4.21

Le PacD et le PPCM de deux polynomes réels sont les mémes dans R[X] et dans
C[X].

Preuve

D’aprés la propriété précédente. |

Propriété 4.22

Les racines complexes d’un polyndéme de R[X] sont conjuguées, et si « est racine
de P, alors @ est aussi racine de P avec la méme multiplicité.

Preuve

P est scindé sur C : )

P=X[](X —a)™

i=0
Or, P est a coefficients réels, donc il est égal & son conjugué. Donc

P=P

=A[[(X = ai)m
1=0

=A[] (X =)
'LzO

— XH(X —a;)™
=0

Donc . »
A = a)™ =X][(X —a)™
i=0 i=0

Donc par unicité de la décomposition, pour chaque i, il existe j tel que o = @;. |

Théoréme 4.23 (Irréductibles sur R)

Les polynomes irréductibles sur R sont
e les polynomes de degré 1,

e les polyndomes de degré 2 & discriminant négatif.

Preuve
On décompose le polynome sur C.
On regroupe les racines complexes conjuguées : cela donne un produit de monoémes
(racines réelles) et de polynomes de degré 2 (racines complexes conjuguées).
|

Méthode
‘;our décomposer un polynéome dans R[X], on peut déja le décomposer dans C[X].

A Ce n’est pas parce qu’'un polynéome n’a pas de racines qu’il est irréductible.
Exemple

Par exemple X% +1 = (X2 — /2X 4+ 1)(X? +1/2X + 1) (obtenu avec les racines
niémes de 'unité).
E Complément : relations coefficients-racines

Ce théoréme n’est pas a apprendre par coeur. Vous devez le « voir » sur le polynome.

— Théoréme 4.24 (Relation coefficients-racines)
Si P un polynome scindé sur K et de degré n > 1 :

n

P= iaka = anH(X —ai),

k=0 i=1

alors

n

n

An—1
E oy = —

Qa
i=1 n

n
a
et l_llozi: (—1)"a—0.
i=

A Le polynéme est supposé scindé.

Preuve
Il suffit de développer le polynome scindé et de chercher le coefficient de X° et celui de
XL ]
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Exemple (Cas des polynémes de degrés 2 et 3)
Si P=(X—a)(X —p),alors P=X?— (a+3)X + af.
Cest-a-dire a; = —(a + B) et ag = ap.
SiP=(X—-a)(X—-8)(X—7),alors P=X?+(a+B+7)X%+a; X —aBy. Le
coefficient a; est égal & af + avy + 5.

Explications

Vous remarquerez les valeurs des coefficients ne dépendent pas de 'ordre des racines
(on peut intervertir « et v par exemple). Heureusement.

De méme que 'on a donné ici ’expression de ay, on peut donner une forme générale
du coeflicient ay, en fonction des racines. On obtient une relation de type polyndmiale,
si ce n’est que chaque racine correspond & une indéterminée. Ce sont les polyndmes
a plusieurs variables. Ici, comme les indéterminées (ou variables) peuvent étre inter-
verties ont dit que les polyndémes sont symétriques.

Méthode

Lorsque 'on connait une racine d’un polynéme de degré 2, il est facile d’obtenir la
seconde & partir des coefficients.
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