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Polynômes à une
indéterminée

« Toutes les équations d’algèbre reçoivent autant de solutions que la
dénomination de la plus haute quantité le démontre. »

Inventions nouvelles en l’algèbre, Albert Girard (1595 - 1632)

Les polynômes font partie des premiers objets apparus dans l’histoire des mathéma-
tiques. On les trouve dès l’époque babylonienne par la description de méthodes de
résolution des équations de degré 2.
Les résolutions des équations de degré supérieur ont beaucoup occupé les scientifiques
de la Renaissance : Cardan, Tartaglia, Ferraro. Elles ont fait l’objet de nombreux
« défis » dans lesquels les mathématiciens se mesuraient l’un à l’autre et démontraient
leur agilité.
C’est au XIXe siècle qu’Abel puis Galois mettent fin à la course aux résolutions
d’équations polynomiales en démontrant que les équations de degré 5 et plus ne sont
en général pas résolubles par radicaux. Les outils qu’ils introduisent pour leur dé-
monstration ouvrent de nouvelles perspectives aux mathématiques et donnent une
impulsion déterminante à l’algèbre.
Les polynômes ont la spécificité de constituer un pont naturel entre l’analyse et
l’algèbre, selon qu’ils sont vus comme applications, ou comme objets algébriques.
La démonstration par Gauss du théorème de d’Alembert-Gauss en est un exemple
éloquent (et hors programme).

Notation : Dans tout le chapitre, K désigne le corps R ou C.

1 L’anneau K[X]

A Définition

Nous allons commencer par définir de façon algébrique les polynômes. La définition est
un peu déroutante, mais permet de rendre certains résultats complètement triviaux.

On appelle polynôme sur K toute suite de KN stationnaire à 0.

Définition 1.1 (Polynôme formel)

Exemple
La suite (0, 1, 5, 2, 9, 0, 0, 3, 0, 0, 0, ...) est un polynôme sur R.

Deux polynômes sont égaux si et seulement si leurs coefficients sont égaux deux à
deux.

Théorème 1.2 (Identification)

Preuve
Découle directement de la définition d’une suite. Si on avait utilisé une définition d’un
polynôme à partir des fonctions polynomiales, un tel résultat reste accessible, mais
s’obtient beaucoup plus difficilement.

Soit P un polynôme sur K défini par la suite (an) ∈ KN stationnaire à 0.
On note alors

P =

+∞∑
k=0

akX
k.

Lorsque le coefficient ak est nul, en général on n’écrit pas le terme akX
k.

On note K[X] l’ensemble des polynômes d’indéterminée X sur K.

Notation (Indéterminée X)

Explications
Il faut comprendre que ce n’est qu’une notation :

1. X est l’indéterminée. Ce n’est pas un nombre, ni une variable.

2. La puissance de X désigne la place du coefficient dans la suite. À ce stade, il n’y
a aucun rapport avec les puissances entières.

3. Malgré la notation, la somme formelle n’est pas infinie car à partir d’un certain
rang, tous les termes de la suite sont nuls.
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Exemple
Le polynôme (0, 1, 5, 2, 9, 0, 0, 3, 0, 0, 0, ...) s’écrit également

P = X + 5X2 + 2X3 + 9X4 + 3X7.

Remarque : On veille à toujours écrire les coefficients par rang croissant ou décroissant
de la puissance de X.

On appelle polynôme nul, le polynôme P = 0.
On appelle polynôme unité, le polynôme P = 1.
On appelle monôme, un polynôme dont un seul coefficient est non nul.
Un polynôme est pair, si tous ses coefficients d’indice impair sont nuls.
Un polynôme est impair, si tous ses coefficients d’indice pair sont nuls.

Définition 1.3 (Polynômes particuliers)

Exemple
P = 2X5 est un monôme.
P = 1− 3X2 + 2X8 est un polynôme pair.

On appelle degré du polynôme, l’indice de son dernier coefficient non nul.
On note deg(P ) ou ∂oP le degré de P.
Par convention deg(0) = −∞.

Le coefficient dominant d’un polynôme (non nul) est son dernier coefficient non
nul.
Un polynôme unitaire est un polynôme de coefficient dominant égal à 1.
Un polynôme constant est un polynôme nul ou de degré 0.

Définition 1.4 (Degré d’un polynôme)

Exemple
Le degré de −3X5 −X2 + 7 est 5, son coefficient dominant est −3.
X4 +X3 −X − 9 est un polynôme unitaire.

Si on sait que degP ⩽ n, alors on peut écrire P =

n∑
k=0

akX
k.

" degP = 0 ̸⇒ P = 0.

Pour n ∈ N, on note Kn[X] l’ensemble des polynômes de degré inférieur ou égal
à n.

Notation

" Si P ∈ Kn[X], alors on n’a pas nécessairement degP = n, mais plutôt degP ⩽ n.

B Opérations sur les polynômes

Soient P =
+∞∑
k=0

akX
k et Q =

+∞∑
k=0

bkX
k deux polynômes de K[X]. Soit λ ∈ K.

On définit la somme de P et Q par P +Q =

+∞∑
k=0

(ak + bk)X
k.

On définit le produit de P par le scalaire λ par λP =

+∞∑
k=0

(λak)X
k.

On définit le produit de P par Q par PQ =

+∞∑
k=0

ckX
k avec ck =

k∑
i=0

aibk−i.

Définition 1.5 (Sommes et produits avec les polynômes)

Exemple
Si P = 1 + 2X − 3X4, Q = 3X +X3 +X4 −X5 et λ = 2 alors :

P +Q = 1 + 5X +X3 − 2X4 −X5.

λP = 2 + 4X − 6X4.

PQ = (1 + 2X − 3X4)(3X +X3 +X4 −X5)

= 3X + 6X2 +X3 + 3X4 − 8X5 − 2X6 − 3X7 − 3X8 + 3X9.

Explications
Pour la somme et pour le produit avec un scalaire, ces opérations coïncident avec les
opérations naturelles sur les suites. Par contre, pour le produit entre deux polynômes,
le produit naturel entre suites consisterait simplement à multiplier entre eux les co-
efficients de même rang ce qui n’est pas le choix réalisé ici.
En effet, la règle définie pour le produit est celle qui utilise la distributivité par rap-
port au « + » dans laquelle l’exposant de l’indéterminée est identifié à une puissance.
Ce choix est indispensable pour pouvoir ensuite établir un lien intéressant entre les
polynômes et les fonctions polynomiales comme nous le ferons plus loin.
Construction du coefficient ck.
Le coefficient noté ck correspond à tous les produits de termes qui interviennent dans
le monôme Xk. Si on « choisit » aiX

i dans le premier polynôme, alors il faut le
multiplier par un monôme de degré Xk−i pour obtenir un monôme de degré Xk. On
a donc le terme aibk−i. Il faut ajouter tous les produits ainsi obtenus à partir des

différents coefficients de P . On trouve ck =
n∑

i=0

aibk−i.

Ce coefficient peut aussi être interprété à partir d’une somme double.
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Pour degP = n et degQ = m, on trouve en effet :

P Q =

(
n∑

i=0

aiX
i

)  m∑
j=0

bjX
j

 =

n∑
i=0

m∑
j=0

aibjX
i+j =

n+m∑
k=0

∑
i+j=k

aibjX
i+j

=

n+m∑
k=0

k∑
i=0

aibk−iX
k

=

n+m∑
k=0

ckX
k.

On a noté ai = 0 pour i ⩾ n et aj = 0 pour j ⩾ m.
Nous avons déjà vu plusieurs façons de calculer une somme double au moment du
chapitre sur sommes et produit. La multiplication polynomiale nous en donne une
dernière : les sommes de Cauchy.
Au lieu de sommer en ligne ou en colonne, on somme en diagonale. Sur chaque
diagonale, la somme i + j est constante : on obtient un monôme. Le polynôme
produit est la somme de tous ces monômes.

j

j = 0 j = 1 · · · · · · j = m − 2 j = m − 1 j = m

i

i = n anb0 anb1 anbk−n

. . . anbm−1 anbm

i = n − 1 an−1b0 an−1b1
. . .

. . . an−1bm

cm+n
i+j=m+n

...
. . .

. . .
cm+n−1

i+j=m+n−1

i = 3 a3b0
. . . aibk−i

...

i = 2 a2b0 a2b1
. . .

. . .

i = 1 a1b0 a1b1 a1b2
. . .

ck
i + j = k

i = 0 a0b0 a0b1 a0b2 a0b3
. . .

...

c0
i + j = 0

c1
i + j = 1

c2
i + j = 2

c3
i + j = 3 · · · · · ·

Pour faire le produit de deux polynômes (ou plus), il est souvent malhabile de faire
un développement « classique » tel que vous le faites depuis le collège.
Il est préférable de faire directement le calcul des ck : choisir les termes dans chaque
parenthèse, pour que, multipliés entre eux, ils donnent le bon degré k.
Nous avons déjà utilisé ces méthodes de calcul rapide lors de la linéarisa-
tion/délinéarisation en trigonométrie.

Méthode (Calcul pratique du produit de deux polynômes)

On définit par récurrence la puissance k-ième d’un polynôme P avec

• P 0 = 1,

• ∀k ⩾ 0, P k+1 = P × P k = P k × P.

Définition 1.6 (Puissance k-ième d’un polynôme)

Preuve
On montre aisément par récurrence que l’on a bien P k × P = P × P k.

Soient P =
+∞∑
k=0

akX
k et Q =

+∞∑
k=0

bkX
k deux polynômes de K[X]. On définit la

composée de Q par P avec

P ◦Q =

+∞∑
k=0

akQ
k =

+∞∑
k=0

ak

(
+∞∑
i=0

biX
i

)k

.

Définition 1.7 (Composée de deux polynômes)

Exemple
Soient P = 3X2 + 7X − 1 et Q = X2 + 1. Calculer P ◦Q.
Solution :
P ◦Q = 3

(
X2 + 1

)2
+ 7

(
X2 + 1

)
− 1 = 3X4 + 13X2 + 15.

K[X] est stable par somme, par produit avec un scalaire, par produit entre
polynômes et par composition.
C’est-à-dire que la somme de deux polynômes est un polynôme,

le produit de deux polynômes est un polynôme,
le produit d’un polynôme par un scalaire est un polynôme,
la composée de deux polynômes est un polynôme.

Théorème 1.8 (Stabilité des polynômes)

Preuve
La preuve consiste à montrer que les sommes correspondant au résultat sont bien finies
(la suite doit être stationnaire à 0, sinon ce n’est pas un polynôme). C’est trivial pour
la somme ou le produit avec un scalaire.
Pour le produit de deux polynômes, on fera cette preuve avec les degrés un peu plus
loin.
Pour la composition, cela découle du produit.
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• L’opération somme « + » sur les polynômes est :

– interne : la somme de deux polynômes est un polynôme.

– associative. ∀(P, Q1, Q2) ∈ (K[X])
3
, (P +Q1) +Q2 = P + (Q1 +Q2).

– admet un élément neutre : 0 ∈ K[X] tel que
∀P ∈ K[X], P + 0 = 0 + P = P.

– tout polynôme admet un opposé :
∀P ∈ K[X], −P ∈ K[X] avec P + (−P ) = (−P ) + P = 0.

– commutative : ∀(P, Q) ∈ (K[X])
2
, P +Q = Q+ P.

→ (K[X], +) est un groupe commutatif (ou abélien).

• L’opération produit« × » sur les polynômes est :

– interne : le produit de deux polynômes est un polynôme.

– associative. ∀(P, Q1, Q2) ∈ (K[X])
3
, (P ×Q1)×Q2 = P × (Q1 ×Q2).

– admet un élément unité : 1 ∈ K[X] tel que ∀P ∈ K[X], P×1 = 1×P = P.

– distributive par rapport à « + » : ∀(P, Q1, Q2) ∈ (K[X])
3
,

P × (Q1 +Q2) = P ×Q1 + P ×Q2.

– commutative : ∀(P, Q) ∈ (K[X])
2
, P ×Q = Q× P.

→ (K[X], +, ×) est un anneau commutatif.

Théorème 1.9 (Structure d’anneau)

Remarque : Les différentes structures (groupes, anneaux, corps) seront revues dans
un chapitre spécifique.
Nous verrons également que la structure de K[X] est plus riche que cela, c’est un
espace vectoriel et même une algèbre.

Preuve
Les vérifications sont immédiates.

La formule du binôme de Newton est valable sur K[X] :
Soient (P,Q) ∈ (K[X])

2 et n ∈ N.

(P +Q)n =

n∑
k=0

(
n

k

)
P kQn−k.

Propriété 1.10 (Formule du binôme de Newton)

Preuve
Cela provient du fait que le produit entre polynômes est commutatif. C’est alors ex-
actement la même preuve que sur K.

Nous verrons en exercice que cela, joint avec le principe d’identification, permet

d’obtenir facilement des identités sur les coefficients binomiaux.

La formule de Bernoulli est valable sur K[X] :
Soient (P,Q) ∈ (K[X])

2 et n ∈ N.

Pn+1 −Qn+1 = (P −Q)

n∑
k=0

P kQn−k.

Propriété 1.11 (Égalité de Bernoulli)

Preuve
Comme sur K car le produit entre polynômes commute.

C Degrés

Soient P et Q, deux polynômes de K[X],

deg(P +Q) ⩽ max(degP,degQ),

deg(PQ) = degP + degQ,

deg(P ◦Q) = degP × degQ pour Q non constant.

Et deg(P +Q) < max (degP, degQ) si, et seulement si P et Q sont de même degré
avec coefficients dominants opposés.

Propriété 1.12

Remarque : Lorsqu’un, ou les deux polynômes sont nuls, les relations pour la somme
et le produit restent valables en prenant deg 0 = −∞ et en appliquant les règles de
calcul sur R.

Preuve
Trivial pour la somme, c’est donné par la formule du cours.
Pour le produit, si P ou Q est nul, le résultat est immédiat.
Si P et Q sont tous deux non nuls, on démontre le résultat en deux étapes (on obtient
l’égalité par une double inégalité).
On note degP = n et degQ = m.
Étapes de la preuve.

1. On montre que deg(P Q) ⩽ m + n, c’est-à-dire que tous les coefficients d’indice
supérieur sont nuls.

2. On montre que deg(P Q) ⩾ m + n, c’est-à-dire que le coefficient d’indice m + n est
non nul.

Rédaction.

1. On commence par montrer deg(P Q) ⩽ m+n en vérifiant que pour tout k ⩾ m+n+1,
ck = 0.

https://molin-mathematiques.fr
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On suppose donc k ⩾ m+ n+ 1, alors

ck =

k∑
i=0

aibk−i =

n∑
i=0

aibk−i car ai = 0 pour i ⩾ n+ 1

=

n∑
i=k−m

aibk−i car bk−i = 0 pour k − i > m ⇐⇒ i < k −m.

Or k ⩾ m+ n+ 1, donc k −m ⩾ n+ 1 > n donc la somme est vide.
Donc pour k ⩾ m+ n+ 1, ck = 0. Donc deg (P Q) ⩽ m+ n

2. On montre ensuite que cm+n ̸= 0.
D’après le raisonnement précédent, pour k = m+ n, on a

ck=m+n =

n∑
i=k−m

aibk−i car bk−i = 0 pour k − i > m ⇐⇒ i < k −m

=

n∑
i=n

aibm+n−i on remplace k par m+ n

= anbm.

Or an ̸= 0 car degP = n et bm ̸= 0 car degQ = m, donc cm+n = anbm ̸= 0.
Donc deg(P Q) ⩾ m+ n.

3. Conclusion : par double inégalité, deg(P Q) = m+ n.

• Pour la composition.
D’après le cas du produit que l’on vient de prouver, on sait par récurrence immédiate
que degQk = k degQ.

Ainsi, pour P =
n∑

k=0

akX
k,

degP ◦Q = max (k degQ, ak ̸= 0) .

Car les degrés sont distincts (Q non constant), donc degPQ = ndegQ.

P ×Q = 0 ⇒ P = 0 ou Q = 0.
On dit que l’anneau K[X] est intègre.

Théorème 1.13

On peut simplifier par des polynômes non nuls dans les équations.

Corollaire 1.14

Preuve
Voici un exemple qui montre que raisonner avec les degrés peut s’avérer très efficace :
Par contraposée, si P ̸= 0 et Q ̸= 0, alors degP ∈ N et degQ ∈ N,
ainsi degP Q = degP + degQ ∈ N, donc P Q ̸= 0.
Faire la preuve du corollaire en exercice.

Exemple
Soient P, Q et R trois polynômes de K[X].
Si PR = PQ avec P ̸= 0, alors R = Q.

Les seuls polynômes inversibles de K[X] sont les constantes non nulles : λ.1K[X],
pour λ ∈ K∗.

Théorème 1.15

Explications
Cela veut dire qu’il est hors de question de diviser par un polynôme (ou de mettre à
la racine carrée, ou ...).
Les seules opérations que nous ayons définies sur les polynômes sont :

• addition (et soustraction) entre polynômes

• multiplication par une constante,

• multiplication entre polynômes.

• puissances entières de polynômes et compositions entre polynômes.

Et c’est tout !

Preuve
Analyse :
P est inversible si et seulement s’il existe un polynôme Q tel que PQ = 1.
En particulier P et Q sont non nuls.
Si on suppose P inversible et Q son inverse, alors

degP + degQ = degP Q = deg 1K[X] = 0.

Or degP ∈ N et degQ ∈ N (car ils sont non nuls), donc la seule solution est degP =
degQ = 0.
Donc P est une constante non nulle.
Synthèse :
Réciproquement, si P est une constante non nulle λ, alors si on pose Q = 1

λ
, c’est aussi

un polynôme et PQ = 1. Donc P est inversible.
Conclusion : P est inversible si et seulement si c’est une constante non nulle. Son
inverse est alors l’inverse de cette constante dans K.

Remarque : De même que l’on a défini le degré, on pourrait définir la valuation d’un
polynôme qui correspond à l’indice de son premier coefficient non nul. On obtiendrait
alors des propriétés très similaires à celles du degré et on poserait val(0) = +∞.
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D Dérivation formelle

Soit P = a0 + a1X + a2X
2 + · · ·+ an−1X

n−1 + anX
n un polynôme de K[X].

On définit le polynôme dérivé, P ′ par

P ′ = a1 + 2a2X + · · ·+ (n− 1)an−1X
n−2 + nanX

n−1.

Avec les notations des suites :
Si P = (a0, a1, a2, · · · , an−1, an, 0, · · · ),
alors P ′ = (a1, 2a2, · · · , (n− 1)an−1, nan, 0, 0, · · · ).

On définit par récurrence la dérivée n-ième de P par

• P (0) = P,

• ∀n ∈ N, P (n+1) = (P ′)(n) =
(
P (n)

)′
.

Définition 1.16 (Polynôme dérivé)

Par abus de notation, je m’autoriserai à écrire 0 × X−1 = 0 étant entendu que
l’objet X−1 n’existe pas.
Ainsi, cette convention personnelle consiste à tolérer son écriture à condition de le
multiplier par 0, et définit un tel objet comme étant le polynôme nul.
Cette petite convention simplifiera les écritures des preuves avec les dérivées.

Remarque : Pour le moment, c’est une dérivation formelle qui n’a aucun lien avec
la dérivation d’une fonction. On rappelle que X n’est pas une variable, mais une
indéterminée.
" On met l’ordre de dérivation entre parenthèses pour ne pas confondre avec la
puissance du polynôme.

Preuve
Il faut montrer la dernière égalité pour la dérivée n-ième sur les polynômes :

(P ′)(n) =
(
P (n)

)′
.

On le démontre par récurrence sur n ∈ N.
Pour n = 0, le résultat est trivial.
On le suppose vérifié à un rang n ∈ N fixé.
Alors (P ′)(n+1) =

(
(P ′)(n)

)′
=

(
P (n+1)

)′
.

Soient P et Q deux polynômes de K[X] et n ∈ N,

1. (linéarité) (λP +Q)(n) = λP (n) +Q(n).

2. • si n ⩽ degP , alors deg
(
P (n)

)
= degP − n,

• si n > deg(P ), alors P (n) = 0.

Propriété 1.17 (Propriétés de la dérivation)

Si (P,Q) ∈ (K[X])
2, alors

(PQ)′ = P ′Q+ PQ′.

Pour n ∈ N, (PQ)(n) =

n∑
k=0

(
n

k

)
P (k)Q(n−k) =

n∑
k=0

(
n

k

)
P (n−k)Q(k).

Propriété 1.18 (Formule de Leibniz)

Preuve
Pour n = 0, l’égalité est évidente.
Pour n = 1 : on pose P =

∑+∞
k=0 akX

k et Q =
∑+∞

p=0 bpX
p.

PQ =

+∞∑
k=0

akX
k

+∞∑
p=0

bpX
p =

+∞∑
k=0

+∞∑
p=0

akbpX
kXp.

(PQ)′ =

+∞∑
i=0

+∞∑
j=0

aibj(X
iXj)′par linéarité

=

+∞∑
i=0

+∞∑
j=0

(i+ j)aibjX
i+j−1

=

+∞∑
i=0

+∞∑
j=0

(
(iaiX

i−1)(bjX
j) + (aiX

i)(jbjX
j−1)

)

=

+∞∑
i=0

+∞∑
j=0

(iaiX
i−1)(bjX

j) +

+∞∑
i=0

+∞∑
j=0

(aiX
i)(jbjX

j−1)

=

+∞∑
i=0

(iaiX
i−1)Q+ P

+∞∑
j=0

(jbjX
j−1)

= P ′Q+ PQ′.

On généralise pour n ⩾ 1 par récurrence en écrivant (PQ)(n+1) = ((PQ)′)
(n) (à faire en

exercice).

Remarque : En algèbre, un opérateur de dérivation est une application additive (en-
tre des ensembles munis des bonnes structures) qui vérifie l’identité de Leibniz. La
dérivation vue jusqu’à présent en est un cas particulier.

Si (P,Q) ∈ (K[X])
2, alors

(P ◦Q)′ = Q′ × P ′ ◦Q.

Propriété 1.19 (Dérivée d’une composée)

Preuve
Commençons par le montrer par récurrence sur n ∈ N pour P = Xn.
Pour n = 0, on trouve P ◦Q = 1, donc (P ◦Q)′ = 0 = Q′ × P ′ ◦Q (car P ′ = 0).
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On suppose le résultat vrai à un rang n ∈ N fixé.
On pose P = Xn+1, alors (P ◦Q)′ =

(
Qn+1

)′
= (Q×Qn)′ = Q′ ×Qn +Q× (Qn)′ =

Q′ ×Qn +Q× n×Q′Qn−1 = (n+ 1)Q′ ×Qn.
Ce qui démontre le résultat.
Pour généraliser à un polynôme P quelconque, il suffit d’utiliser la linéarité.

2 Arithmétique sur K[X]

A Division euclidienne

Soient A,B deux polynômes sur K avec B non nul.
Il existe un unique couple (Q,R) ∈ (K[X])

2 tel que

• A = BQ+R.

• degR < degB.

Théorème 2.1 (Division euclidienne)

Preuve
unicité : Si A = BQ+R et A = BQ′ +R′, avec degR < degB et degR′ < degB.
B(Q−Q′) = R′−R donc par égalité des degrés on a nécessairement deg(Q−Q′) = −∞
(sinon le degré du membre de gauche serait strictement supérieur à celui du membre de
droite). Donc Q = Q′ et R = R′.
existence : par récurrence forte sur le degré de A.

• Initialisation : si degB > degA, on prend Q = 0 et R = A.

• Hérédité : On suppose le résultat vrai au rang n et on considère A de degré n + 1,
avec n+ 1 ⩾ degB = p.
On écrit A = an+1X

n+1 + anX
n + · · · + a1X + a0 avec an+1 ̸= 0 et B = bpX

p +
bp−1X

p−1 + · · ·+ b1X + b0 avec bp ̸= 0.
Alors A =

an+1

bp
Xn+1−pB +A1.

On voit immédiatement que degA1 ⩽ n, donc on peut lui appliquer l’hypothèse de
récurrence : A1 = BQ1 +R avec degR < degQ.
D’où, A = BQ+R avec Q =

an+1

bp
Xn+1−p +Q1.

Explications
L’existence de la division euclidienne dans K[X] permet de définir une arithmétique
très proche de celle de Z, avec pgcd, ppcm (non uniques), polynômes premiers entre
eux... Quelle joie !
On dit que K[X] est un anneau euclidien.

Exemple (Méthode)
Faire la division euclidienne de A = 3X5 + 4X2 + 1 par B = X2 + 2X + 3 en
utilisant la méthode déployée dans la preuve.

Solution :
On pose la division euclidienne comme au primaire pour les entiers. On écrit alors

3X5 + 4X2 + 1 X2 + 2X + 3

On s’intéresse aux coefficients dominants et on voit qu’il faut multiplier X2 par 3X3

pour obtenir 3X5.
On obtient alors :

3X5 +4X2 +1 X2 + 2X + 3
−(3X5 +6X4 +9X3) 3X3

−6X4 −9X3 +4X2 +1

On continue ainsi : à l’étape suivant, on rajoute −6X2 au quotient pour annuler le terme −6X4

... et ainsi de suite.
3X5 +4X2 +1 X2 + 2X + 3

−(3X5 +6X4 +9X3) 3X3 − 6X2 + 3X + 16
−6X4 −9X3 +4X2 +1

−(−6X4 −12X3 −18X2)
3X3 +22X2 +1

−(3X3 +6X2 +9X)
16X2 −9X +1

−(16X2 +32X +48)
−41X −47

On trouve alors

3X5 + 4X2 + 1 =
(
X2 + 2X + 3

) (
3X3 − 6X2t+ 3X + 16

)
− 41X − 47.

B Divisibilité

Dès lors qu’on possède la division euclidienne et la relation de divisibilité, on peut
construire une arithmétique sur K[X] à l’instar de ce qui a été fait sur Z.
On va donc faire un gigantesque « copier-coller » à partir du cours d’arithmétique
sur Z.
Les preuves sont très similaires au cas entier et il est donc conseillé au lecteur de les
rédiger par lui-même en révision du chapitre d’arithmétique sur Z.

Pour (A,B) ∈ (K[X])
2, on dit que B divise A s’il existe Q ∈ K[X] tel que A = BQ.

On le note B|A.
On dit que aussi que A est un multiple de B.

Définition 2.2 (Divisibilité)

Remarque : B divise A si, et seulement si le reste de la division euclidienne de A par
B est nul.

Deux polynômes P et Q sont associés sur K si, et seulement s’il existe λ ∈ K∗ tel
que P = λQ.

Définition 2.3 (Polynômes associés)
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P |Q et Q|P si, et seulement si P et Q sont associés.

Propriété 2.4

Preuve
Si Q = 0, alors P = 0 car Q|P et les polynômes sont bien associés.
Sinon, comme P |Q alors degQ ⩾ degP (relation sur les degrés pour le produit), et par
symétrie, comme Q|P , alors degP ⩾ degQ.
Donc P et Q sont de même degré. L’égalité P = AQ donne donc que degA = 0,
c’est-à-dire A ∈ K : les polynômes sont associés.

La relation de divisibilité est réflexive et transitive sur K[X].
C’est une relation d’ordre (partielle) sur l’ensemble des polynômes unitaires ou nuls
de K[X].

Propriété 2.5

Preuve
Réflexivité : immédiat car P = 1× P .
Transitivité : pas plus dur : si P |Q et Q|R alors il existe des polynômes A et B tels
que Q = AP et R = BQ, donc R = ABP , avec AB ∈ K[X]. Ainsi P |R.
Si on ne considère que les polynômes unitaires ou nuls, la relation est aussi transitive
d’après la propriété précédente (les polynômes sont associés, mais le coefficient multi-
plicateur est nécessairement 1 par égalité des coefficients dominants).

• Si P |Q1 et P |Q2, alors pour tous polynômes U et V , P |UQ1 + V Q2.

• Si P1|Q1 et P2|Q2 alors P1P2|Q1Q2.

• Si P |Q et n ∈ N, alors Pn|Qn.

Propriété 2.6 (Propriété de la divisibilité)

Preuve
Immédiat : à faire en exercice.

C Algorithme d’Euclide

Soient A1, A2, · · · , An sont n polynômes non tous nuls.
D est un diviseur commun à A1, A2, · · · , An s’il divise tous les Ak pour k ∈
[[1, n]].

Définition 2.7 (Diviseur commun)

Soient A et B deux polynômes non tous les deux nuls.
Un plus grand diviseur commun à A et B est un diviseur commun à A et B de
degré maximal.
On dit alors que c’est un pgcd de A et B.

Définition 2.8 (Plus grand diviseur commun)

" Il y a plusieurs pgcd (contrairement à l’arithmétique dans Z). C’est la raison
pour laquelle, on parle d’un plus grand diviseur commun et non du plus grand diviseur
commun.
On va voir que les plus grands diviseurs communs sont associés entre eux.

Preuve
E = {degD, D ∈ K[X] \ {0} tel que D|A, D|B} est une partie non vide majorée de N.
En effet, 1 est un diviseur non nul commun à A et B, donc 0 ∈ E, et tout diviseur
commun à A et B est de degré inférieur1à max (degA, degB) .
Donc E admet un plus grand élément, ce qui prouve l’existence de plus grands diviseurs
communs aux P1, · · · , Pn au sens de la définition.
Nous verrons plus loin que nous pouvons dire beaucoup plus sur ces diviseurs, mais ce
sera plus facile après l’algorithme d’Euclide.

Soient A, B deux polynômes non tous les deux nuls, et Q et R dans K[X] tels que
A = BQ+R. Alors

Les diviseurs de A et B sont les mêmes que ceux de B et R.

En particulier

A et B ont les mêmes pgcd que B et R.

Propriété 2.9

Preuve
Si D|A et D|B alors D|A−BQ = R, donc D|B et D|R.
Réciproquement si D|B et D|R alors D|BQ+R = A, donc D|A et D|R.

1. Si A et B sont non nuls, il est inférieurs à chacun de leurs degrés, le fait de considérer le
maximum évite de traiter à part le cas où l’un des deux polynômes est nul.

https://molin-mathematiques.fr
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Soit (A, B) ∈ (K[X] \ {0})2 , on note R−1 = A et R0 = B, et on définit la
suite (Rn)n∈N par :
∀n ∈ N,

• si Rn ̸= 0, alors Rn+1 est le reste de la division euclidienne de Rn−1 par Rn.

• si Rn = 0, alors Rn+1 = 0.

La suite est stationnaire à 0.

Ainsi, il existe un rang n0 ⩾ 1 tel que Rn0−1 ̸= 0 et Rn0 = 0.
On a alors Rn0−1 qui est un plus grand diviseur commun à A et B.

Théorème 2.10 (Algorithme d’Euclide)

Preuve
C’est le même raisonnement que pour Z en observant la décroissance des degrés.
D’après la propriété, on montre par récurrence sur k ∈ [[0, n0]] que les diviseurs communs
à A et B sont les mêmes que les diviseurs communs à Rk−1 et Rk (tant que Rk−1 ̸= 0,
c’est-à-dire k ⩽ n0, sinon Rk n’est plus défini à partir d’une division euclidienne et la
propriété précédente ne s’applique plus).
On obtient donc au rang n0 que A et B ont les mêmes diviseurs que Rn0−1 et Rn0 .
Or Rn0 = 0 est divisible par tous les polynômes, donc les diviseurs communs cherchés
sont exactement les diviseurs de Rn0−1.
En particulier Rn0−1 est un pgcd de A et B.

Remarque : On voit que si degA < degB, alors la première étape consiste à échanger A
et B.

D PGCD

Soient A et B deux polynômes non tous nuls.

• Tous les plus grands diviseurs communs à A et B sont associés entre eux.

• Il existe un unique diviseur commun unitaire que l’on note A ∧B.

• D est un plus grand diviseur commun à A et B si, et seulement si D est
un diviseur commun à A et B et si tout diviseur commun à A et B divise
également D.
(les plus grands diviseurs communs sont donc des éléments maximaux pour la
relation de divisibilité).

Par convention, 0 ∧ 0 = 0.

Théorème 2.11 (pgcd)

Preuve

• On observe trivialement que si D est un plus grand diviseur commun alors tous les

polynômes qui lui sont associés sont aussi plus grands diviseurs communs.
Réciproquement, si A est un diviseur de degré maximal, nous avons vu, lors de
l’algorithme d’Euclide, que A|Rn0−1 et qu’il est de même degré.
Donc A est associé à Rn0−1, ce qui montre bien que tous les plus grands diviseurs
sont associés entre eux, et qu’il en existe un unique unitaire.

• Avec l’algorithme d’Euclide, on montre de même que tout diviseur commun à A, B est
diviseur de Rn0−1, donc diviseur du pgcd.

Soit (A, B) ∈ (K[X])
2.

Si A = BQ+R avec (Q, R) ∈ K[X]×K[X] \ {0}, alors A ∧B = B ∧R.

Propriété 2.12

Soient A et B deux polynômes non tous les deux nuls,

∃(U, V ) ∈ (K[X])
2
, AU +BV = A ∧B.

Théorème 2.13 (Relation de Bézout)

Preuve
Grâce à l’algorithme d’Euclide étendu comme en arithmétique sur Z.

" Les polynômes U et V ne sont pas définis de façon unique.

Deux polynômes A et B non tous les deux nuls sont dits premiers entre eux, si

A ∧B = 1.

Définition 2.14 (Polynômes premiers entre eux)

Deux polynômes sont premiers entre eux si leurs seuls diviseurs communs sont les
constantes non nulles.

Propriété 2.15

Exemple
(X − α) est premier avec X − β si, et seulement si α ̸= β.
Solution :
Si α = β, alors (X − α) est un divisieur commun non constant, donc ils ne sont pas
premiers entre eux.
Si α ̸= β, alors on note D un diviseur commun à X − α et X − β.
On peut donc écrire (X − α) = DQ1.
Si par l’absurde D non constant, alors degQ1 = 0 donc X − α et D sont associés.
De la même manière X−β et D sont aussi associés. On peut donc écrire D = λ(X−α) =
µ(X−β) avec (λ, µ) ∈ K2. Mais par identification des coefficients, la seule solution est
alors µ = λ = 0. Donc (X − α) ∧ (X − β) = 1.
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Soient A et B deux polynômes non tous les deux nuls,

A ∧B = 1 ⇐⇒ ∃(U, V ) ∈ (K[X])
2
, AU +BV = 1.

Théorème 2.16 (Théorème de Bézout)

Soient P1, P2, · · · , Pn, n polynômes non nuls.

• P1, P2, · · · , Pn sont premiers entre eux deux à deux si

∀(i, j) ∈ [[1, n]]2, i ̸= j ⇒ Pi ∧ Pj = 1.

• P1, P2, · · · , Pn sont premiers entre eux dans leur ensemble si leurs seuls
diviseurs communs sont les constantes non nulles.

Définition 2.17

Soient (A1, A2, · · · , An), n polynômes non tous nuls.

1. Tout diviseur commun à A1, · · · , An de degré maximal est appelé plus grand
diviseur commun.
Il existe un plus grand diviseur commun unitaire appelé le pgcd et noté A1 ∧
A2 ∧ · · · ∧An.

2. L’ensemble des plus grands diviseurs communs est l’ensemble des polynômes
associés au pgcd.

3. D est un plus grand diviseur commun à A1, · · · , An si, et seulement si

• D est un diviseur commun à A1, · · · , An.

• Tout diviseur commun à A1, · · · , An est également diviseur de D.

Définition 2.18 (pgcd d’une famille de polynômes)

Remarque : Des polynômes sont premiers entre eux dans leur ensemble si, et seule-
ment si leur pgcd est égal à 1.

Preuve
On utilise la preuve dite « plus algébrique » dans le cours d’arithmétique sur Z. L’approche
est moins naturelle, mais plus simple à conduire. Elle part de la relation de Bézout au
lieu de la voir comme conséquence.
On note

E = A1K[X] +A2K[X] + · · ·+AnK[X]

= {A1U1 +A2U2 + · · ·+AnUn, (U1, U2, · · · , Un) ∈ (K[X])n} .

E est non vide et {degP, P ∈ E \ {0}} est une partie non vide de N qui admet donc
un plus petit élément.
Soit D ∈ E de degré égal à ce minimum, que l’on peut choisir unitaire.

• Montrons que D est un diviseur commun à tous les éléments de E.
Soit i ∈ [[1, n]], on peut alors réaliser la division euclidienne Ai = DQi+Ri avec degRi <
degD.
Mais en utilisant la définition de E, on voit immédiatement que Ri ∈ E.
Par minimalité du degré de D, on a donc Ri = 0, donc D divise Ai.
Donc D est un diviseur commun à A1, · · · , An.

• Montrons que tout diviseur commun est diviseur de D.
C’est évident, car si P |A1, P |A2, · · · , P |An alors pour tous polynômes U1, U2, · · · , Un,
P |A1U1 +A2U2 + · · ·+AnUn.
Donc P divise tous les éléments de E, donc P |D.
Ceci montre en particulier que D est un diviseur commun de degré maximal (la di-
visibilité donne l’inégalité des degrés).
Il est évident que si D est un plus grand diviseur commun, alors tous les polynômes
qui lui sont associés, le sont aussi. Il existe donc un plus grand diviseur commun
unitaire.

• Unicité du pgcd : Si D1 et D2 convenaient, alors on vient de voir que D1|D2 et
D2|D1 par symétrie des rôles, donc D1 et D2 associés.
Or comme ils sont supposés unitaires, ils sont égaux.

Soient (A1, A2, · · · , An), n polynômes non tous nuls.
Il existe (U1, U2, · · · ., Un) ∈ (K[X])

n tel que

n∑
k=1

AkUk = A1 ∧ · · · ∧An.

Propriété 2.19 (Relation de Bézout)

Preuve
Directement à partir de la preuve précédente.

E PPCM

Soient A1, A2, · · · , An, n polynômes.
M est un multiple commun à A1, A2, · · · , An s’il est multiple de tous les Ak

pour k ∈ [[1, n]].

Définition 2.20 (ppcm)

La preuve pour les plus petits communs multiples pour deux ou davantage de polynômes
est strictement identique.
Aussi, pour ne pas surcharger inutilement ce cours, nous donnons directement le
théorème et la preuve pour n ⩾ 2 polynômes.

https://molin-mathematiques.fr
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Soient (A1, A2, · · · , An), n polynômes

1. Tout multiple commun à A1, · · · , An de degré entier minimal est appelé plus
petit multiple commun
(et s’il n’existe pas, le polynôme nul).
Il existe un plus petit multiple commun unitaire ou nul appelé le ppcm et
noté A1 ∨A2 ∨ · · · ∨An.

2. L’ensemble des plus petits multiples communs est l’ensemble des polynômes
associés au ppcm.

3. M est un plus petit multiple commun à A1, · · · , An si, et seulement si

• M est un multiple commun à A1, · · · , An.

• Tout multiple commun à A1, · · · , An est également multiple de M.

Définition 2.21 (ppcm d’une famille de polynômes)

Preuve
On suppose tous les Ai non nuls.
On considère l’ensemble E = A1K[X] ∩A2K[X] ∩ · · · ∩AnK[X].
E désigne l’ensemble des multiples communs à A1, · · · , An.
E est non vide et non réduit à 0 (il contient le produit des Ai).
Soit M un polynôme de E de degré entier minimal (l’existence est immédiate).
Alors M est un multiple commun à A1, · · · , An. Tous ses polynômes associés sont aussi
dans E, donc on peut choisir M unitaire.
Soit P un autre multiple commun. On effectue la division euclidienne P = MQ + R
avec degR < degM.
P et M étant multiples communs, R l’est aussi.
Mais par minimalité du degré de M , on a donc R = 0.
Donc P est multiple de M.

Si A et B sont deux polynômes non tous les deux nuls, alors

1. (commutativité)

A ∧B = B ∧A et A ∨B = B ∨A.

2. (insensible au produit par un facteur non nul) ∀λ ∈ K∗,

(λA) ∧B = A ∧B et (λA) ∨B = A ∨B.

Propriété 2.22 (Propriétés du pgcd et du ppcm)

F Polynômes irréductibles

Un polynôme non constant est dit irréductible si ses seuls diviseurs sont ses
polynômes associés et les constantes.

Définition 2.23

Remarque : Les polynômes constants ne sont pas irréductibles.
Nous verrons que l’irréductibilité d’un polynôme peut dépendre du corps K choisi.

Soit (A, B, C) ∈ (K[X] \ {0})3 .

Si A|BC et A ∧ C = 1, alors A|B.

Théorème 2.24 (Lemme de Gauss)

Preuve
En utilisant Bézout comme dans Z.

Soit (P1, P2, A) ∈ (K[X] \ {0})3 . Si P1|A, P2|A et si P1 ∧ P2 = 1, alors P1P2|A.

Théorème 2.25

Preuve
Avec Bézout P1U + P2V = 1, donc P1AU + P2AV = A.
Or, P1Q1 = A et P2Q2 = A, donc en remplaçant on trouve

P1P2Q2U + P1P2Q1V = A.

ce qui donne le résultat voulu.

Tout polynôme non nul de K[X] s’écrit de manière unique (à l’ordre près) comme
produit d’irréductibles unitaires et d’une constante.

P = λ

k∏
i=0

Qi

avec λ ∈ K∗ et les Qi sont des polynômes irréductibles unitaires.

Théorème 2.26 (Décomposition en produit d’irréductibles)

Remarque : La caractère unitaire des polynômes permet d’avoir l’unicité.

Preuve
unicité : On suppose deux décompositions

λ1

k∏
i=0

Qi = λ2

p∏
j=0

Pj .
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On peut simplifier les Qi et les Pj qui sont commun.

Soit Qi dans la décomposition. Alors Qi divise λ2

p∏
j=0

Pj .

Or, il est immédiat que pour tout j ∈ [[0, p]], Qi ∧ Pj = 1 (s’ils avaient un diviseur
commun de degré supérieur ou égal à 1, alors ce ne pourrait être que Pj car irréductible,
et aussi Qi car irréductible. C’est impossible car ils sont unitaires et différents).
Ainsi, par application successive du lemme de Gauss, Qi|λ2 ce qui est absurde.
Donc la décomposition est unique.
existence : On montre l’existence par récurrence (forte) sur le degré de P .
Pour degP = 0, le résultat est trivial.
On suppose le résultat vérifié pour degP ⩽ n.
Si degP = n+ 1.

• Soit P est irréductible et le théorème est vérifié.

• Soit P n’est pas irréductible et il existe Q1 et Q2 dans K[x] de degré supérieur à
1 tels que P = Q1Q2.
Alors degQ1 ⩽ n et degQ2 ⩽ n (d’après la formule du degré d’un produit).
Donc Q1 et Q2 se décomposent comme produit d’irréductibles sur K[X].
Donc P également.

Exemple
Donner la décomposition en produit d’irréductibles de P = 2X5 − 2X4.

3 Fonctions polynomiales

Soit P =
n∑

k=0

akX
k ∈ K[X].

On appelle application polynomiale associée à P , l’application :

P̃ :

 R −→ K

x 7→
n∑

k=0

akx
k.

Définition 3.1

Remarque : Par abus de langage, on confond parfois polynôme et fonction polynomiale
mais il faut comprendre la différence entre ces deux objets.

Pour tous polynômes P et Q de K[X], et pour tout λ ∈ K

P̃ +Q = P̃ + Q̃,

λ̃P = λP̃ ,

P̃ ×Q = P̃ × Q̃,

P̃ ◦Q = P̃ ◦ Q̃,
P̃ ′ = P̃ ′.

Propriété 3.2

Remarque : dans la suite, on omettra généralement le signe « tilde » et on identifera

P et P̃ : le contexte indiquera s’il s’agit du polynôme ou de la fonction polynomiale
associée.
Un tel abus de notation sera mieux légitimé lors de l’expression du lien bijectif entre
polynômes et fonctions polynomiales, plus loin dans ce chapitre.

4 Racines

A Racines et factorisation

Soit P ∈ K[X] et α ∈ K,

P =

+∞∑
k=0

P (k)(α)

k!
(X − α)k.

La somme est finie et s’arrête au coefficient égal au degré de P.

Théorème 4.1 (Formule de Taylor)

Remarque : α est quelconque, ce n’est pas nécessairement une racine de P .

Preuve
On procède par récurrence sur le degré du polynôme.
Pour P constant, la relation est immédiate.
On suppose la relation au rang n ∈ N, et on la montre au rang n+ 1.

On considère donc P de degré n+ 1 et on pose Q = P −
n+1∑
k=0

P (k)(α)
k!

(X − α)k.

Q′ = P ′ −
n+1∑
k=1

P k(α)

(k − 1)!
(X − α)k−1.

Or degP ′ = n, donc on peut lui appliquer l’hypothèse de récurrence ce qui donne

P ′ =

n∑
k=0

(P ′)(k)(α)

k!
(X − α)k =

n+1∑
k=1

P (k)(α)

(k − 1)!
(X − α)k−1.

Ainsi, on retrouve l’expression précédente et on a donc Q′ = 0.
Donc Q est constant, et vaut Q(α) = P (α) − P (α) = 0. Ceci montre la relation au
rang n+ 1.

La décomposition pour la formule de Taylor est unique.

Si α ∈ K et P ∈ K[X] tel que P =
+∞∑
k=0

ak(X −α)k, alors ∀k ∈ N, P (k)(α) = k!ak.

Propriété 4.2 (Unicité de la décomposition)

Preuve
On remarque que P (X + α) =

+∞∑
k=0

akX
k et on utilise l’unicité de la décomposition sur

la famille (Xk)k∈N (principe d’identification).

https://molin-mathematiques.fr
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On dit que α ∈ K est une racine de P si, et seulement si P̃ (α) = 0.

Définition 4.3 (Racine d’un polynôme)

Pour P ∈ K[X] et α ∈ K,
le reste de la division euclidienne de P par X − α est P (α).

Lemme 4.4

Preuve
On réalise la division euclidienne : P = (X − α)Q+R avec degR < 1, donc R ∈ K.
En évaluant en α on trouve alors R = P (α).

α est une racine de P sur K si, et seulement si X − α divise P.

Théorème 4.5 (Lien entre racines et factorisation)

Preuve
(sens réciproque) si (X − α) divise P , alors P = (X − α)Q.
Donc P̃ (α) = 0× Q̃(α) = 0.
(sens direct) d’après le lemme.

Explications
Trouver les racines d’un polynôme sur K ou le factoriser revient au même. Si on trouve
des racines évidentes d’un polynôme, cela donne une factorisation. Nous avons déjà
utilisé cette méthode.

Exemple
Factoriser P = X4 − 2X3 − 16X2 + 2X + 15.
Solution :
1 est racine évidente, donc on peut factoriser par X − 1 :

P = (X − 1)(X3 −X2 − 17X − 15)

−1 est racine évidente, donc on peut factoriser par X + 1 :

P = (X − 1)(X + 1)(X2 − 2X − 15).

On trouve ensuite deux racines −3 et 5 soit par essais, soit avec le calcul du discrimi-
nant ∆. Donc P = (X − 1)(X + 1)(X + 3)(X − 5).

Si α est racine de P , alors sa multiplicité est égale au plus grand entier m tel que

P (α) = P ′(α) = ... = P (m−1)(α) = 0.

Par abus, si P (α) ̸= 0, on dit que α est racine de multiplicité 0.

Définition 4.6 (Multiplicité d’une racine)

Remarque : m est le plus grand entier, ce qui suppose que P (m)(α) ̸= 0.

Exemple
Pour un polynôme du second degré, on a une racine double α lorsque ∆ = 0.
Dans ce cas, on a bien P (α) = P ′(α) = 0, et P ′′(α) ̸= 0.
En effet, la courbe est tangente à l’axe des abscisses en α. Elle s’annule donc en
α et sa dérivée est nulle en ce point (minimum avec tangente horizontale).

α est une racine de P de multiplicité m sur K si, et seulement si (X−α)m divise P et
(X − α)m+1 ne divise pas P .

Théorème 4.7 (Racine multiple et factorisation)

Preuve
On applique la formule de Taylor à P en α et on l’interprète comme une division
euclidienne :

P =

+∞∑
k=0

P (k)(α)

k!
(X − α)k

=

m−1∑
k=0

P (k)(α)

k!
(X − α)k +

+∞∑
k=m

P (k)(α)

k!
(X − α)k

=

m−1∑
k=0

P (k)(α)

k!
(X − α)k︸ ︷︷ ︸

R0

+(X − α)m
+∞∑
k=m

P (k)(α)

k!
(X − α)

⩾0︷ ︸︸ ︷
k −m

︸ ︷︷ ︸
Q0

.

Et au rang m, on trouve aussi

P =

m∑
k=0

P (k)(α)

k!
(X − α)k︸ ︷︷ ︸

R1

+(X − α)m+1
+∞∑

k=m+1

P (k)(α)

k!
(X − α)

⩾0︷ ︸︸ ︷
k −m− 1

︸ ︷︷ ︸
Q1

.

Par unicité de la division euclidienne, on voit que R0 et R1 sont respectivement les
restes des divisions euclidiennes de P par (X − α)m et par (X − α)m+1.
On peut alors écrire

α racine de multiplicité m ⇐⇒

{
∀k ∈ [[0, m− 1]], P (k)(α) = 0

P (m) (α) ̸= 0,

⇐⇒

{
R0 = 0

R1 ̸= 0,

⇐⇒

{
(X − α)m|P
(X − α)m+1 ̸ |P

La première équivalence (sens réciproque) provient de l’unicité de la décomposition en
somme de Taylor énoncée au théorème 4.2.
La somme R0 est nulle si, et seulement si ∀k ∈ [[0, m− 1]], P (k)(α) = 0.
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Exemple
0 est racine triple (de multiplicité 3) de X7 − 3X5 + 2X4 −X3.

Soit P ∈ K[X], alors si α1, α1, · · · , αn sont n racines distinctes de P de multiplicités
m1,m2, · · · ,mn, alors

P divisible par (X − α1)
m1(X − α2)

m2 · · · (X − αn)
mn .

Propriété 4.8

Preuve
Par récurrence sur n.
Pour passer de n à n+ 1, on utilise le fait que (X − α1)

m1 · · · (X − αn)
mn est premier

avec (X − αn+1)
mn+1 et le théorème 2.25.

Le nombre de racines (comptées avec leur multiplicité) d’un polynôme non nul est
inférieur ou égal à son degré.
Seul le polynôme nul admet une infinité de racines.

Corollaire 4.9

Explications
Ce théorème n’affirme pas qu’il existe autant de racines que le degré (c’est vrai sur C
comme le donnera le théorème de d’Alembert-Gauss, mais en général faux sur R).
Il donne simplement un majorant du nombre de racines.
Cependant, si on obtient autant de racines que le degré, cela permet d’affirmer, sans
autres vérifications, qu’on les a toutes trouvées.

Exemple (Rappel)
Factoriser Xn − 1 sur C.
Solution :
La factorisation revient à chercher les solutions de l’équation xn = 1.
On retrouve les racines n-i èmes de l’unité :{

e
2ikπ
n , k ∈ [[0, n− 1]]

}
.

Ces racines sont deux à deux distinctes et il y en a autant que le degré, donc ce sont
les seules.
Comme le coefficient dominant est 1, on obtient donc :

Xn − 1 =

n−1∑
k=0

(
X − e

2ikπ
n

)
.

Pour montrer qu’un polynôme est nul, on peut au choix :

1. montrer que tous ses coefficients sont nuls,

2. montrer qu’il admet une infinité de racines,

3. montrer qu’il admet plus de racines que son degré,

4. montrer que son degré ne peut être un nombre entier.

⇒ on raisonne souvent par l’absurde pour montrer qu’un polynôme est nul.

Méthode (Montrer qu’un polynôme est nul)

Exemple
Soient P̃ et Q̃ deux applications polynomiales.
S’il existe x ∈ R tel que P̃ (x) = Q̃(x), cela entraîne-t-il que P = Q ?
S’il existe a < b tels que ∀x ∈]a, b[, P̃ (x) = Q̃(x), cela entraîne-t-il que P = Q ?

L’application

ϕ

{
K[X] −→ P(K)

P 7→ P̃

réalise une bijection entre entre K[X] et l’ensemble des fonctions polynomiales
sur K.
Cette application est un morphisme pour les lois +, ×, ·, ◦ et pour l’opérateur de
dérivation :

• ϕ(P +Q) = ϕ(P ) + ϕ(Q),

• ϕ(P ×Q) = ϕ(P )× ϕ(Q),

• ϕ(λP ) = λϕ(P ),

• ϕ(P ◦Q) = ϕ(P ) ◦ ϕ(Q),

• ϕ(P ′) = (ϕ(P ))
′
.

Théorème 4.10 (Lien bijectif entre les polynômes et les applications polynomiales)

Explications
C’est un théorème clef. C’est lui qui permet de faire le lien entre les polynômes
et les applications polynomiales, c’est-à-dire entre l’algèbre et l’analyse.
Il justifie que l’on peut utiliser l’analyse pour démontrer des résultats d’algèbre et
réciproquement.

Preuve
Surjectivité : trivial du fait de la définition de P(K).
Injectivité : la différence des deux polynômes antécédents a une infinité de racines.
Donc elle est nulle. Donc chaque application polynomiale a un unique antécédent.

https://molin-mathematiques.fr
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Un polynôme est pair si, et seulement si sa fonction polynomiale est paire.
Un polynôme est impair si, et seulement si sa fonction polynomiale est impaire.

Propriété 4.11

Preuve
Le sens direct est évident. Montrons le sens réciproque pour le cas pair.

Si on note P =
+∞∑
k=0

akX
k alors pour tout x ∈ R P (x) = P (−x), ainsi P (X) − P (−X)

admet une infinité de racines donc est le polynôme nul.
On obtient donc P (X) = P (−X) c’est-à-dire

+∞∑
k=0

akX
k =

n∑
k=0

(−1)kakX
k.

Donc par identification :
∀k ∈ 2N+ 1, ak = 0.

Exemple (Algorithme de Horner)

Soit P =
n∑

k=0

akX
k. Pour évaluer P (x), on peut calculer simplement P =

n∑
k=0

akx
k,

mais cela demande de calculer toutes les puissances de x et s’avère rarement op-
timal.
Horner a proposé une autre méthode qui s’appuie sur l’idée selon laquelle on peut
calculer les puissances de x, non séparément, mais en s’utilisant à chaque fois de
la puissance précédente.
Prenons un exemple :
Pour 3x2 − 2x+ 4, on peut faire 3x− 2, puis on multiplie par x et on ajoute 4,
ce qui donne (3x− 2)x+ 4, ce qui est le résultat voulu.
Plus généralement pour P , on calcule

bn−1 = anx+ an−1

bn−2 = bn−1x+ an−2

bn−3 = bn−2x+ an−3

...

b0 = b1x+ a0

On a alors b0 = P (x).

B Théorème de d’Alembert-Gauss

Un polynôme est scindé s’il peut s’écrire comme produit de polynômes unitaires
de degré 1 et d’un coefficient constant.

P = λ

p∏
i=0

(X − αi)
mi .

Définition 4.12 (Polynôme scindé)

Remarque : Les polynômes constants sont scindés.

Tout polynôme est scindé sur C.

Autre formulation : Tout polynôme non constant admet au moins une racine sur C.
Autre formulation : Les seuls polynômes irréductibles sur C sont les polynômes de
degré 1.

Théorème 4.13 (d’Alembert-Gauss - Théorème fondamental de l’algèbre)

Preuve
Admis - curieusement pour démontrer le théorème fondamental de l’algèbre, on a besoin
de l’analyse.

" C’est faux sur R[X], par exemple X2 +1 est irréductible sur R, mais pas sur C.

C Polynômes interpolateurs de Lagrange

Dans cette partie, il est important non seulement de connaître les résultats, mais de
savoir les retrouver.

On définit le symbole de Krönecker par :

∀(i, j) ∈ N2, δi, j =

{
1 si i = j

0 sinon.

Notation (Symbole de Krönecker)

Soient n ∈ N, (x1, x2, · · · , xn) ∈ Kn deux à deux distincts.
Pour tout j ∈ [[1, n]], il existe un unique polynôme Lj ∈ Kn−1[X] tel que

∀i ∈ [[1, n]], Lj(xi) = δi, j .

Lj est le j-ième polynôme interpolateur de Lagrange.

Propriété 4.14 (Polynômes interpolateurs de Lagrange)
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Preuve
Analyse : unicité.
Soit P un tel polynôme, alors, il admet n− 1 racines : {xi, i ̸= j} .
Donc il est divisible par

∏
i ̸=j

(X − xi) (les xi sont deux à deux distincts).

On peut donc écrire P = Q
∏
i̸=j

(X − xi) avec Q ∈ K[X].

Mais degP ⩽ n− 1, donc Q est une constante.
Or P (xj) = 1, donc cette constante est égale à 1∏

i̸=j
xj−xi

.

Si le polynôme existe, alors il est défini de façon unique et son expression est

Lj =
∏
i ̸=j

X − xi

xj − xi
.

Synthèse : réciproquement, il est évident qu’un tel polynôme convient.

Avec les notations précédentes :

∀i ∈ [[1, n]], Lj =
∏
i ̸=j

X − xi

xj − xi
et

n∑
j=1

Lj = 1.

Propriété 4.15

Preuve
L’expression de Lj a été obtenue à la preuve précédente.

Si on note P =
n∑

j=1

Lj − 1, alors degP ⩽ n− 1, et ∀j ∈ [[1, n]], P (xj) = 0.

Donc P admet au moins n racines distinctes, donc P est le polynôme nul.

Soient n ∈ N, (x1, x2, · · · , xn) ∈ Kn deux à deux distincts.
Soit (y1, y2, · · · , yn) ∈ Kn.
Il existe un unique polynôme P ∈ Kn−1[X] tel que

∀i ∈ [[1, n]], P (xi) = yi.

Ce polynôme est donné par

P =

n∑
j=1

yjLj .

Théorème 4.16

Preuve (à savoir refaire)
Unicité : Si on considère deux polynômes vérifiant les hypothèses : P et Q, alors
P −Q admet n racines distinctes (les xi ) et est de degré inférieur ou égal à n− 1.
Donc c’est le polynôme nul, donc P = Q, d’où l’unicité.
Existence : On voit directement que l’expression donnée dans le théorème convient.

Avec les notations précédentes, tout polynôme P ∈ Kn−1[X] se décompose de façon
unique comme combinaison linéaire des Lj .

∀P ∈ Kn−1[X], ∃!(α1, α2, · · · , αn) ∈ Kn, P =

n∑
j=1

αjLj .

Propriété 4.17

Preuve
Unicité : On suppose que P s’écrit sous deux formes avec (α1, · · · , αn) ∈ Kn et
(β1, · · · , βn) ∈ Kn.
alors

n∑
i=1

αiLi =

n∑
i=1

βiLi.

En particulier, si on évalue en xj on trouve αj = βj .
Ceci étant pour tous les j ∈ [[1, n]], on a ∀j ∈ [[1, n]], αj = βj , d’où l’unicité de l’écriture.
Existence : Si on note pour tout j ∈ [[1, n]], yj = P (xi), alors le théorème précédent
permet de trouver la forme qui convient :

P =

n∑
j=1

P (xj)Lj .

On verra plus tard que l’on dit que les polynômes de Lagrange forment une base
de Kn−1[X].

Soient n ∈ N, (x1, x2, · · · , xn) ∈ Kn deux à deux distincts.
Soit (y1, y2, · · · , yn) ∈ Kn.
Les polynômes P ∈ K[X] vérifiant ∀i ∈ [[1, n]], P (xi) = yi, sont exactement les
polynômes

P =

n∑
j=1

yjLj +Q

n∏
j=1

(X − xj),

pour Q décrivant K[X].

Théorème 4.18 (Cas général)

Preuve
Il est évident que les polynômes donnés conviennent. Montrons que ce sont les seuls.

Si on note P un tel polynôme, alors P −
n∑

j=1

yjLj s’annule en tous les xj , donc est

divisible par
n∏

j=1

(X − xj) ce qui donne bien la forme voulue.
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D Polynômes réels

Soit (A, B) ∈ R[X] avec B non nul.
Le quotient et le reste de la division euclidienne de A par B est le même dans C[X]
et dans R[X].

Propriété 4.19

Preuve
Par unicité de la division euclidienne dans C.

Si (A, B) ∈ R[X], tous deux non nuls.
A|B dans R[X] si, et seulement si A|B dans C[X].

Propriété 4.20

Preuve
Utiliser l’unicité de la division euclidienne.

Le pgcd et le ppcm de deux polynômes réels sont les mêmes dans R[X] et dans
C[X].

Propriété 4.21

Preuve
D’après la propriété précédente.

Les racines complexes d’un polynôme de R[X] sont conjuguées, et si α est racine
de P , alors α est aussi racine de P avec la même multiplicité.

Propriété 4.22

Preuve
P est scindé sur C :

P = λ

p∏
i=0

(X − αi)
mi

Or, P est à coefficients réels, donc il est égal à son conjugué. Donc

P = P

= λ

p∏
i=0

(X − αi)mi

= λ

p∏
i=0

(X − αi)mi

= λ

p∏
i=0

(X − αi)
mi

Donc

λ

p∏
i=0

(X − αi)
mi = λ

p∏
i=0

(X − αi)
mi

Donc par unicité de la décomposition, pour chaque i, il existe j tel que αi = αj .

Les polynômes irréductibles sur R sont

• les polynômes de degré 1,

• les polynômes de degré 2 à discriminant négatif.

Théorème 4.23 (Irréductibles sur R)

Preuve
On décompose le polynôme sur C.
On regroupe les racines complexes conjuguées : cela donne un produit de monômes
(racines réelles) et de polynômes de degré 2 (racines complexes conjuguées).

Pour décomposer un polynôme dans R[X], on peut déjà le décomposer dans C[X].

Méthode

" Ce n’est pas parce qu’un polynôme n’a pas de racines qu’il est irréductible.
Exemple

Par exemple X4 +1 = (X2 −
√
2X +1)(X2 +

√
2X +1) (obtenu avec les racines

nièmes de l’unité).

E Complément : relations coefficients-racines

Ce théorème n’est pas à apprendre par cœur. Vous devez le « voir » sur le polynôme.

Si P un polynôme scindé sur K et de degré n ⩾ 1 :

P =

n∑
k=0

akX
k = an

n∏
i=1

(X − αi),

alors
n∑

i=1

αi = −an−1

an
et

n∏
i=1

αi = (−1)n
a0
an

.

Théorème 4.24 (Relation coefficients-racines)

" Le polynôme est supposé scindé.

Preuve
Il suffit de développer le polynôme scindé et de chercher le coefficient de X0 et celui de
Xn−1.
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Exemple (Cas des polynômes de degrés 2 et 3)
Si P = (X − α)(X − β), alors P = X2 − (α+ β)X + αβ.
C’est-à-dire a1 = −(α+ β) et a0 = αβ.
Si P = (X −α)(X − β)(X − γ), alors P = X3 +(α+ β+ γ)X2 + a1X −αβγ. Le
coefficient a1 est égal à αβ + αγ + βγ.

Explications
Vous remarquerez les valeurs des coefficients ne dépendent pas de l’ordre des racines
(on peut intervertir α et γ par exemple). Heureusement.
De même que l’on a donné ici l’expression de a1, on peut donner une forme générale
du coefficient ak en fonction des racines. On obtient une relation de type polynômiale,
si ce n’est que chaque racine correspond à une indéterminée. Ce sont les polynômes
à plusieurs variables. Ici, comme les indéterminées (ou variables) peuvent être inter-
verties ont dit que les polynômes sont symétriques.

Lorsque l’on connaît une racine d’un polynôme de degré 2, il est facile d’obtenir la
seconde à partir des coefficients.

Méthode
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