LES NOMBRES RÉELS

RÉSOLUTION D'ÉQUATIONS ET INÉQUATIONS

D'autres exercices sur les inégalités se trouvent dans la partie soutien du site, ne pas hésiter à s'y référer.

Exercice 1 (*)

Résoudre et représenter graphiquement les solutions des inégalités suivantes :

1)
$$(x-2)(x-1) < 0$$
.

3)
$$\frac{x+3}{x-5} < 1$$
.

$$2) \quad \frac{x+3}{x-5} < 0.$$

4)
$$x < \frac{1}{x}$$
.

Exercice 2 (*)

Résoudre les inégalités suivantes :

1)
$$-x^3 + 2x^2 \ge 0$$
.

3)
$$x^3 + 5x^2 + 8x + 6 < 2$$
.

2)
$$2x^2 - 4x - 6 \ge 0$$
.

4)
$$x^3 + x^2 - 5x - 5 \le 0$$
.

Exercice 3 (*)

Résoudre les inégalités suivantes :

1)
$$|x-5| < 2$$
. 2) $|x+1| > 3$.

$$2) |x+1| > 3.$$

3)
$$\frac{1+x}{1-x} < |x-1|$$
.

Exercice 4 (**)

Résoudre les égalités suivantes :

1)
$$x|x| = 3x + 2$$
.

3)
$$|x^2 + x - 3| = |x|$$
.

2)
$$|x+2| + |3x-1| = 4$$
.

4)
$$x + |x| = \frac{2}{x}$$
.

Exercice 5 (*)

- 1) Montrer que pour tout x > -1, $\ln(1+x) \le x$.
- En déduire que pour tout x > 0,

$$0 \leqslant \ln\left(\frac{x+1}{x}\right) \leqslant \frac{1}{x}.$$

Exercice 6 (**)

Résoudre les égalités suivantes :

1)
$$\ln((x+2)(x-1)) = \ln 2$$
.

2)
$$x + \sqrt{2x+1} = 1$$
.

RELATIONS BINAIRES

Exercice 7 (*)

Donner la liste de

- 1) toutes les relations d'équivalence sur $E = \{1, 2, 3\}$.
- 2) toutes les relations d'ordre sur $E = \{1, 2\}$.

Exercice 8 (**) (lecture du cours)

Répondre en justifiant.

- 1) Une relation binaire peut-elle être à la fois symétrique et antisymétrique?
- Une relation binaire peut-elle n'être ni symétrique, ni antisymétrique?
- 3) Soit E un ensemble non vide muni d'une relation d'ordre \leq . Peut-il exister une suite d'éléments $(x_i)_{1 \le i \le n}$ deux à deux distincts de E formant une boucle d'inégalités :

$$x_1 \preccurlyeq x_2 \preccurlyeq \cdots \preccurlyeq x_n \preccurlyeq x_1$$
?

- 4) Soit E un ensemble non vide muni d'une relation \prec antisymétrique et transitive. Est-ce nécessairement une relation d'ordre stricte? Dans ce cas, y-a-t-il unicité de la relation d'ordre « large » qui lui est associée?
- 5) On considère une partition d'un ensemble non vide E. Montrer qu'il existe une relation d'équivalence sur E telle que cette partition correspondent aux classes d'équivalence de cette partition.
- 6) Donner une condition nécessaire et suffisante pour qu'une relation d'équivalence sur E soit totale.

Exercice 9 (*)

On note $E = \mathbf{Z} \times \mathbf{N}^*$ et on munit E de la relation binaire définie par

$$\forall ((a, b), (c, d)) \in E^2, (a, b) \mathcal{R}(c, d) \iff ad = bc.$$

- 1) Montrer que \mathcal{R} est une relation d'équivalence sur E.
- 2) Décrire la classe d'équivalence de $(a, b) \in E$.

Exercice 10 (*)

On définit la relation \mathcal{R} sur $\mathcal{P}(E)$ par

$$\forall (A, B) \in (\mathcal{P}(E))^2, A \mathscr{R} B \iff A = B \text{ ou } A = \overline{B}.$$

Montrer que $\mathcal R$ est une relation d'équivalence.

Exercice 11 (**)

On définit la relation ${\mathscr R}$ sur ${\mathbf R}$ par

$$\forall (x, y) \in \mathbf{R}^2, \, x \mathcal{R} y \iff x e^y = y e^x.$$

- 1) Montrer que \mathcal{R} est une relation d'équivalence.
- 2) Pour $x \in \mathbf{R}$, déterminer le nombre d'éléments de la classe de x modulo \mathscr{R} .

Exercice 12 (**)

Étudier la relation $\mathcal R$ définie sur $\mathbf R$ par

$$\forall (x, y) \in \mathbf{R}^2, \, x \mathcal{R} y \iff \exists n \in \mathbf{N}^*, \, y = x^n.$$

3 Majorants-minorants

Exercice 13 (*)

- 1) La fonction $x \mapsto \frac{1}{x}$ est-elle majorée sur \mathbf{R}_+^* , est-elle minorée sur ce même intervalle ?
- 2) Donner sa borne inférieure en justifiant. Est-ce un minimum ?

Exercice 14 (*)

$$E = \{1 - (-1)^n, n \in \mathbf{N}\}.$$

- 1) L'ensemble est-il majoré ? minoré ?
- 2) S'il est majoré, donner sa borne supérieure, est-ce un maximum ?
- 3) S'il est minoré, donner sa borne inférieure, est-ce un minimum?

Exercice 15 (*)

$$E = \left\{ \frac{2n-1}{n}, \ n \in \mathbf{N}^* \right\}.$$

- 1) L'ensemble est-il majoré ? minoré ?
- 2) S'il est majoré, donner sa borne supérieure, est-ce un maximum?
- 3) S'il est minoré, donner sa borne inférieure, est-ce un minimum?

Exercice 16 (*)

On considère les fonctions a et b définies sur $\mathbf R$ par:

$$a(x) = \begin{cases} 2-x & \text{si } x \geqslant 3 \\ x^2 & \text{si } x < 3 \end{cases} \quad \text{et} \quad b(x) = \begin{cases} 1+1/x & \text{si } x > 0 \\ \sqrt{(-x)} & \text{si } x \leqslant 0 \end{cases}.$$

- 1) Les fonctions sont-elles majorées ? minorées ?
- 2) Si elles sont majorées, donner leur borne supérieure, est-ce un maximum?
- 3) Si elles sont minorées, donner leur borne inférieure, est-ce un minimum?

Exercice 17 (**)

On définit la suite (u_n) par $u_0 = 1$ et

$$\forall n \in \mathbf{N}, \ 3u_{n+1} + 2u_n + 1 = 0.$$

Déterminer si la suite est majorée, minorée.

Déterminer, en cas d'existence sup $\{u_n, n \in \mathbb{N}\}$ et inf $\{u_n, n \in \mathbb{N}\}$.

Exercice 18 (***)

Soient A et B deux parties non vides minorées de \mathbf{R} .

Montrer que $A \cup B$ admet une borne inférieure et l'exprimer en fonction de $\inf(A)$, $\inf(B)$.

Exercice 19 (***)

Soient A et B deux parties non vides majorées de \mathbf{R} , non disjointes.

- 1) Montrer que $\sup A \cap B \leqslant \min (\sup A, \sup B)$.
- 2) A-t-on l'égalité dans le cas général ?
- 3) Qu'en est-il si A et B sont des intervalles ?

Exercice 20 (***)

Soient f et g deux fonctions $\mathbf{R} \to \mathbf{R}$ bornées.

- 1) Montrer que |f| et |g| sont est majorées sur \mathbf{R} .
- 2) Montrer que $\sup_{x \in \mathbf{R}} (|f(x) + g(x)|) \leq \sup_{x \in \mathbf{R}} (|f(x)|) + \sup_{x \in \mathbf{R}} (|g(x)|)$.
- 3) Soit $\lambda \in \mathbf{R}$. Montrer que $\sup_{x \in \mathbf{R}} \left(|\lambda f(x)| \right) = |\lambda| \sup_{x \in \mathbf{R}} \left(|f(x)| \right)$.

4 PARTIE ENTIÈRE

Exercice 21 (**)

Démontrer que $\forall (x, y) \in \mathbf{R}^2$,

$$\lfloor x \rfloor + \lfloor y \rfloor \leqslant \lfloor x + y \rfloor \leqslant \lfloor x \rfloor + \lfloor y \rfloor + 1.$$

Exercice 22 (**)

Démontrer que $\forall x \in \mathbf{R}, \forall n \in \mathbf{N}^*,$

$$0 \leqslant \lfloor nx \rfloor - n \lfloor x \rfloor \leqslant n - 1.$$

Exercice 23 (**)

Démontrer que $\forall x \in \mathbf{R}, \forall n \in \mathbf{N}^*, \left| \frac{1}{n} \lfloor nx \rfloor \right| = \lfloor x \rfloor.$

Exercice 24 (*)

Résoudre l'équation $\left\lfloor \frac{x}{1-3x} \right\rfloor = 2$.

Exercice 25 (**)

Résoudre sur ${f R}$

$$\lfloor 2x - 1 \rfloor = \lfloor x + 1 \rfloor$$
.

Exercice 26 (**)

Soit a un réel fixé.

- 1) Montrer que pour tous réels x, $\lfloor x \rfloor + \left | x + \frac{1}{2} \right | = \lfloor 2x \rfloor$.
- 2) Montrer que pour tout $k \in \mathbf{N}$, $\left| \frac{a+2^k}{2^{k+1}} \right| = \left\lfloor \frac{a}{2^k} \right\rfloor \left\lfloor \frac{a}{2^{k+1}} \right\rfloor$.
- 3) En déduire, pour tout entier n, une expression simplifiée de $u_n = \sum_{k=0}^{n} \left\lfloor \frac{a+2^k}{2^{k+1}} \right\rfloor$.

5 Inégalités plus sophistiquées

Exercice 27 (*)

Démontrer que pour tout $(x,y) \in \mathbf{R}^2$,

$$\min(x,y) = \frac{(x+y) - |x-y|}{2}$$
 et $\max(x,y) = \frac{(x+y) + |x-y|}{2}$.

Exercice 28 (**)

- 1) Résoudre dans **R**, l'inéquation suivante : $x^2 x 1 \ge 0$.
- 2) Résoudre dans R, la chaîne d'inéquations suivantes :

$$1 + x - x^2 \le x^2 - 3x + 1 \le x^2 - x - 1.$$

3) Résoudre dans R, l'inéquation :

$$|x^2 - 3x + 1| \leqslant x^2 - x - 1.$$

Exercice 29 (**)

Soit $n \ge 1$.

On considère $(a_i)_{i \in [\![1,n]\!]} \in (\mathbf{R}_+^*)^n$, et on se propose de comparer leurs moyennes harmonique H, géométrique G et arithmétique A.

Elles sont définies par

$$H = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} a_i}, \quad G = \left(\prod_{i=1}^{n} a_i\right)^{\frac{1}{n}} \quad \text{et} \quad A = \frac{1}{n} \sum_{i=1}^{n} a_i.$$

1) Montrer que pour $n \in \{1, 2\}$,

$$G \leqslant A$$
.

- 2) En déduire que pour tout n puissance de 2, $G \leq A$.
- 3) Soit $n \in \mathbb{N}^*$. Il existe $p \in \mathbb{N}$ tel que $n \leq 2^p$. On complète la famille (a_1, \dots, a_n) par la valeur A autant de fois que nécessaire pour obtenir un 2^p -uplet. Montrer que cela permet de prouver que $G \leq A$ au rang n.
- 4) Prouver que $H \leq G$.

MPSI

Exercice 30 (**)

On définit f sur \mathbf{R}_+ par

$$f: x \mapsto \sup_{n \in \mathbb{N}} \frac{x^n}{n!}.$$

Montrer que f est bien définie sur \mathbf{R}_+ et donner son expression sans utiliser les bornes supérieures (ou inférieures).

Exercice 31 (**)

- 1) (*) Montrer que $\forall x \in [0,1], 0 \le x(1-x) \le \frac{1}{4}$. Retenir cette inégalité et la méthode.
- 2) En déduire que $\forall (a, b, c) \in [0, 1]^3$,

$$\min (a(1-b), b(1-c), c(1-a)) \leq \frac{1}{4}.$$

Exercice 32 (**)

- 1) Soient $(x, y) \in \mathbf{R}^2$, montrer que $(x + y)^2 \geqslant 4xy$.
- 2) En déduire que

$$\forall (a,b,c) \in (\mathbf{R}_+)^3, \ (a+b)(b+c)(c+a) \geqslant 8abc.$$

3) En déduire que

$$\forall (a, b, c) \in (\mathbf{R}_{+}^{*})^{3}, \ (a + b + c) \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geqslant 9$$

Exercice 33 (***)

Montrer que pour tout $n \geqslant 3$,

$$\sqrt{n} < \sqrt[n]{n!}$$
.

6 Densité

Exercice 34 (*)

Montrer que $E = \{r^3, r \in \mathbf{Q}\}$ est dense dans \mathbf{R} .

Exercice 35 (*)

Soit $A \subset B$ deux parties non vides de \mathbf{R} ,

- 1) On suppose A dense dans \mathbf{R} , montrer alors que B est dense dans \mathbf{R} . Montrer également que A est alors dense dans B.
- 2) On suppose à présent que A est dense dans B et B dense dans $\mathbf R$. Montrer alors que A est dense dans $\mathbf R$.

7 APPROFONDISSEMENT

Exercice 36 (***) (Min-max ou max-min?)

1) Soit $(n, p) \in (\mathbf{N}^*)^2$. $\forall i \in [1, n], \forall j \in [1, p],$ on définit $a_{i,j} \in \mathbf{R}$. Démontrer que

$$\min_{1\leqslant i\leqslant n} \left(\max_{1\leqslant j\leqslant p} a_{i,j}\right) \geqslant \max_{1\leqslant j\leqslant p} \left(\min_{1\leqslant i\leqslant n} a_{i,j}\right).$$

2) (Lewis Carroll) Soient 200 hussard rangés en 10 lignes et 20 colonnes. Dans chaque ligne, on prend le plus grand puis on retient le plus petit de tous ceux retenus : X

Dans chaque colonne, on prend le plus petit, puis on retient le plus grand ce ceux-ci : Y.

Qui est le plus grand ? X ou Y ?

Exercice 37 (***)

On note E l'ensemble des parties non vides majorées de \mathbf{R} .

$$f: \left\{ \begin{array}{ccc} (E, \subset) & \to & (\mathbf{R}, \leqslant) \\ A & \mapsto & \sup A. \end{array} \right.$$

- 1) Montrer que f est une fonction croissante pour les relations d'ordre choisies.
- 2) Montrer qu'elle n'est pas strictement croissante.