SOMMES ET PRODUITS

SOMMES

Exercice 1 (*) (Pour commencer)

Pour $n \in \mathbf{N}^*$ et $a \in \mathbf{C}$, calculer les sommes :

- 1) $\sum_{k=0}^{10} 5$. 4) $\sum_{k=0}^{n} 3(a^{k}+1)$. 7) $\sum_{k=-n}^{n} (2k+1)$.

- 2) $\sum_{k=1}^{n} 3^{n}$. 5) $\sum_{k=0}^{n} 3a^{k+1}$. 8) $\sum_{k=-5}^{-10} a$.

 $3) \sum_{k=n}^{2n} a.$

- 6) $\sum_{k=-n}^{0} k$. 9) $\sum_{k=-n}^{n} k(k+2)$.

Exercice 2 (*)

Pour $n \in \mathbb{N}^*$ et $a \in \mathbb{C}$, calculer les sommes :

- 1) $\sum_{k=-2}^{7} (-1)$. 3) $\sum_{k=1}^{n} a^{2k+1}$. 5) $\sum_{k=1}^{n-1} (-1)^k$.
- 2) $\sum_{k=0}^{n} e^{ak}$. 4) $\sum_{k=0}^{n-1} (k+1)^2$.
- 6) $\sum_{k=1}^{2n} n^k$.

Exercice 3 (**) (changement d'indice)

Remplacer le ? par sa valeur dans les égalités suivantes :

1) $\sum_{k=1}^{n} (k+1)a_k = \sum_{k=2}^{n} ja_i$.

3) $\sum_{k=1}^{n+1} a_{n-k} = \sum_{j=2}^{n} a_j$.

2) $\sum_{k=2}^{n+3} a_{k-1} = \sum_{j=2}^{n+3} a_j$.

4) $\sum_{k=1}^{n} a_{2k} + \sum_{k=1}^{n} a_{2k+1} = \sum_{k=2}^{?} a_k$.

Exercice 4 (**)

Pour $n \in \mathbb{N}^*$, calculer:

1) $\sum_{k=1}^{n} \frac{k}{(k+1)!}.$

2) $\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{2}{k+1} + \frac{1}{k+2} \right)$.

Exercice 5 (**)

Soit $a \in \mathbf{C}$, $n \in \mathbf{N}^*$, on pose $S_n = \sum_{k=1}^n ka^k$.

- 1) Calculer S_n lorsque a=1.
- 2) Lorsque $a \neq 1$, calculer $aS_n S_n$, en déduire la valeur de S_n .

Exercice 6 (**) (Inégalité classique)

Soit p un nombre entier, $p \ge 2$. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\sum_{k=0}^{n} \frac{1}{p^k} \leqslant \frac{p}{p-1}.$$

SOMMES DOUBLES

Exercice 7 (*)

Pour $n \in \mathbf{N}^*$, calculer les sommes :

- 1) $\sum_{i=0}^{n} \sum_{j=1}^{n} i$. 3) $\sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{i}{j}$. 5) $\sum_{i=0}^{n} \sum_{j=1}^{n} (2^{i} + j)$.
- 2) $\sum_{i=0}^{n-1} \sum_{j=0}^{n} 2^{i+j}$. 4) $\sum_{i=0}^{n} \sum_{j=0}^{n} (2i+j)$.

Exercice $\stackrel{i=1}{8}\stackrel{j=i+1}{(**)}$

Pour $n \in \mathbb{N}^*$, calculer les sommes :

- 1) $\sum_{1 \leq i,j \leq n} ij$. 2) $\sum_{1 \leq i < j \leq n} ij$. 3) $\sum_{1 \leq i < j \leq n} i + j$.

MPSI

Exercice 9 (**)

Pour $n \in \mathbb{N}^*$, calculer les sommes :

1)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \max(i, j).$$

$$2) \sum_{1 \leqslant i, j \leqslant n} |i - j|.$$

Exercice 10 (***)

Pour $n \ge 1$, calculer

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{i}{i+j}.$$

3 PRODUITS

Exercice 11 (*)

Pour $a \in \mathbf{C}$ et $n \in \mathbf{N}^*$, calculer les produits suivants :

$$1) \quad \prod_{k=1}^{n} \frac{k}{k+3}.$$

$$3) \quad \prod_{k=1}^{n} a^k.$$

$$2) \quad \prod_{k=1}^{n} \left(1 - \frac{1}{k} \right).$$

4)
$$\prod_{\substack{k=0\\k\neq n}}^{2n} (-1)^k (n-k).$$

Exercice 12 (*)

Simplifier en utilisant la notation factorielle:

$$1) \quad 6 \times 5 \times 4 \times 3.$$

2)
$$\frac{10 \times 9 \times 8}{7 \times 6 \times 5 \times 4}$$
. 3) $n(n-1)(2n+2)$.

3)
$$n(n-1)(2n+2)$$

Exercice 13 (**)

Simplifier en utilisant la notation factorielle

1)
$$(2n) \times (2n-2) \times (2n-4) \times \cdots \times 2$$
.

2)
$$(2n-1) \times (2n-3) \times (2n-5) \times \cdots \times 1$$
.

Exercice 14 (***)

On définit la suite (u_n) par $(u_0, u_1) \in \mathbf{R}^2$ et

$$\forall n \in \mathbf{N}, u_{n+2} = -2(n+1)u_n.$$

Exprimer simplement u_n en fonction de n et sans utiliser le signe \prod .

COEFFICIENTS BINOMIAUX

Exercice 15 (*)

Calculer les expressions suivantes :

$$1) \quad \binom{10}{9}$$

$$2)$$
 $\binom{8}{2}$

3)
$$\binom{21}{21}$$

$$\begin{pmatrix} 50 \\ 48 \end{pmatrix}$$

Exercice 16 (*)

Pour $(x,y) \in \mathbb{C}^2$, développer rapidement à l'aide du triangle de Pascal.

1)
$$(1+x)^5$$
.

2)
$$(1-x)^6$$
.

3)
$$(x-y)^4$$
.

Exercice 17 (*)

Calculer les sommes suivantes :

1)
$$\sum_{k=0}^{n} \binom{n}{k} \frac{1}{3^k}.$$

5)
$$\sum_{k=0}^{n} \binom{n}{k} \frac{3^{k-1}}{2^{2k}}$$
.

$$2) \quad \sum_{k=1}^{n} \binom{n}{k} 3^{k+1}.$$

6)
$$\sum_{k=0}^{n-1} {n \choose k+1} \frac{2^n (-1)^{k(k+1)}}{3^{2k}}.$$

3)
$$\sum_{k=0}^{n-1} \binom{n-1}{k} 3^{k-1}.$$

7)
$$\sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{n-k}}{3^{k+1}}$$
.

4)
$$\sum_{k=0}^{n-2} \binom{n-1}{k} 3^{2k-1}.$$

Exercice 18 (*)

Calculer les sommes suivantes :

1)
$$\sum_{k=1}^{n} k \binom{n}{k}$$
.
Exercice 19 (**)

$$2) \quad \sum_{k=1}^{n} k^2 \binom{n}{k}.$$

2)
$$\sum_{k=1}^{n} k^2 \binom{n}{k}$$
. 3) $\sum_{k=0}^{n} \frac{(-1)^k}{1+k} \binom{n}{k}$.

Calculer:

$$\sum_{k=0}^{n} \frac{k^2}{1+k} \binom{n}{k}.$$

Exercice 20 (*)

Calculer la double somme :

$$\sum_{i=0}^{n} \sum_{j=i}^{n} \binom{n-i}{n-j} \binom{n}{i}.$$

Exercice 21 (**) (Formule de la gouttière)

Pour tout $(n, p) \in \mathbb{N}^2$, montrer que :

$$\sum_{k=0}^{n} \binom{k}{p} = \binom{n+1}{p+1}.$$

Exercice 22 (***)

Pour $n \in \mathbb{N}$, calculer les sommes :

$$S_1 = \sum_{0 \leqslant 2k \leqslant n} \binom{n}{2k}$$
 et $S_2 = \sum_{0 \leqslant 2k+1 \leqslant n} \binom{n}{2k+1}$.

Exercice 23 (***)

Soit $n \in \mathbb{N}$, calculer

$$\sum_{k=0}^{n} \binom{n-k}{k}.$$

Inégalités

Exercice 24 (*)

Montrer que

$$\forall n \in \mathbf{N}, \ n! \leqslant \left(\frac{n+1}{2}\right)^n.$$

Exercice 25 (***)

- 1) Montrer que $\forall x > 0, x + \frac{1}{x} \ge 2$.
- 2) Soit $n \in \mathbf{N}^*$, et $(x_i)_{1 \leq i \leq n}$ un famille de \mathbf{R}_+^* . Montrer que :

$$\left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} \frac{1}{x_i}\right) \geqslant n^2.$$

3) Déterminer les cas d'égalité.

Exercice 26 (***)

Soient $n \in \mathbf{N}^*$ et $(x_1, x_2, \dots, x_n) \in [0, 1]^n$. On pose

$$S_n = \prod_{k=1}^n x_k$$
 et $T_n = \prod_{k=1}^n (1 - x_k)$.

Montrer que $S_n \leqslant 2^{-n}$ ou $T_n \leqslant 2^{-n}$.