FONCTIONS USUELLES

Toutes les études de fonction se font sans calculatrice.

ÉTUDES QUALITATIVES DE FONCTIONS

Exercice 1 (*) (Courbes)

Tracer les fonctions suivantes (sans calculatrice et avec le minimum de calculs) les fonctions suivantes :

1.
$$x \mapsto \ln(x-1) + 2$$

3.
$$x \mapsto \frac{3x-2}{x-1}$$

2.
$$x \mapsto e^{|x|}$$

4.
$$x \mapsto \frac{x+1}{x-1}$$

Exercice 2 (*) (Symétries)

Les fonctions suivantes sont-elles paires ? impaires ? périodiques ? de quelle période ? symétriques par rapport à un point ? à un axe ?

1.
$$x \mapsto \ln(|x|)$$

$$5. \ x \mapsto -x e^{x^2 - 3}$$

2.
$$x \mapsto \frac{1+e^x}{1-e^x}$$

6.
$$x \mapsto e^{(x-3)^2+1}$$

3.
$$x \mapsto \sin(x^2)$$

7.
$$x \mapsto -\ln|(x+1)(x+2)|$$

4.
$$x \mapsto \sin\left(\frac{x+1}{2}\right)$$

8.
$$x \mapsto \frac{x^2-1}{x^2+4}$$

Exercice 3 (**)

Soient f, g deux fonctions définies sur \mathbf{R} , croissantes.

- 1. Montrer que f + g est croissante.
- 2. Si f et q sont positives, que peut-on dire de la monotonie de $f \times g$?
- 3. Si f et g sont négatives, que peut-on dire de la monotonie de $f \times g$?
- 4. Dans le cas général, que peut-on dire de la monotonie de $f \times g$?

2 COMPOSITION

Exercice 4 (*)

On considère les applications

$$f: x \mapsto x^2 + 1$$
 et $g: x \mapsto \ln x$.

Déterminer les domaines de définition et les expressions de $f \circ g$ et $g \circ f$.

Exercice 5 (*)

On considère les applications

$$f: x \mapsto \frac{2x+1}{x-2}$$
 et $g: x \mapsto x^2$

- 1. Donner les ensembles de définition de f et g.
- 2. Déterminer $f \circ g$ et $g \circ f$.
- 3. Calculer l'image de 3x par f et l'image de x^3 par g.

3 DÉRIVÉES

Exercice 6 (*)

Déterminer les domaines de définition et calculer les dérivées des fonctions suivantes.

$$1. \ x \mapsto \frac{1}{x^2 + 1}$$

$$4. \ x \mapsto \frac{1}{\sqrt{x}}$$

$$2. x \mapsto e^{(x^2)}$$

5.
$$x \mapsto \ln|x|$$

$$3. x \mapsto e^{2x+1}$$

$$6. \ x \mapsto \frac{x+1}{x-1}$$

Exercice 7 (**)

Déterminer les domaines de définition et calculer les dérivées des fonctions suivantes.

1.
$$x \mapsto \ln |x^2 - 3x + 2|$$
 3. $x \mapsto \ln^2(x+1)$

3.
$$x \mapsto \ln^2(x+1)$$

2.
$$x \mapsto \sqrt{\tan x}$$

4.
$$x \mapsto \sin \frac{1}{x}$$

Exercice 8 (**)

Déterminer les domaines de définition et calculer les dérivées des fonctions suivantes.

1.
$$x \mapsto \sin^3(x)$$

2.
$$x \mapsto \sqrt{\ln(x^2 - x + 1)}$$

3.
$$x \mapsto \sqrt{\ln|x^2 - x - 1|}$$

LIMITES ET BRANCHES ASYMPTOTIQUES

Exercice 9

Étudier les branches asymptotiques en $+\infty$:

1.
$$x \mapsto \sqrt{x^2 - 2x + 4}$$
.

7.
$$x \mapsto \frac{\ln(x^2+1)}{x}$$
.

2.
$$x \mapsto \sqrt{x^3 - 2x^2 + 4}$$
.

3.
$$x \mapsto \sqrt{x+4} - \sqrt{x}$$
.

8.
$$x \mapsto \ln(x^2 + 1)$$
.

4.
$$x \mapsto \sqrt{x+4} - \sqrt{x-2}$$
. 9. $x \mapsto e^{x^2+1} - e^{x^2}$.

$$9 \ x \mapsto e^{x^2+1} - e^{x^2}$$

5.
$$x \mapsto \sqrt{2x+4} - \sqrt{x-2}$$
.

6.
$$x \mapsto \sqrt{x^2 + 4} - \sqrt{x}$$
. 10. $x \mapsto \frac{e^x}{\ln(x)}$.

11.
$$x \mapsto \ln \left(e^{2x} - e^x \right)$$
. (en $+\infty$ et en 0).

ÉTUDES COMPLÈTES

Exercice 10 (*) (baccalauréat 1962)

Tracer l'allure de la courbe représentative de la fonction

$$f: x \mapsto 2(1 - \cos x)\sin^2(x).$$

Exercice 11 (**)

Étude complète de la fonction

$$x \mapsto \frac{\ln x}{x}$$
.

Exercice 12 (**)

Études complètes des fonctions de l'exercice 7.

Exercice 13 (**)

Étude complète de la fonction

$$x \mapsto \ln|x^3 + 3x^2 + 3x + 2|$$
.

Exercice 14 (**) (baccalauréat 1962)

Étude complète de la fonction

$$f: x \mapsto \frac{x^2 + 2x - 5}{x^2 - 2x + 2}.$$

En déduire le $nombre\ d'extrémités\ d'arcs^1\ u$ solutions de

(E):
$$(1-m)\sin^2 u - 2(m+1)\cos u + 3m + 4 = 0.$$

On posera cos u=x et l'on discutera suivant les valeurs du paramètre m.

6 Appropondissement

Exercice 15 (**)

On définit les fonctions

$$f: x \mapsto (2x-1)^2$$
 et $g: x \mapsto \sup_{x \leqslant t \leqslant x+1} f(t)$.

Étudier g.

Exercice 16 (***)

1. Discuter, suivant la valeur de $a \in \mathbf{R}$ du nombre de solutions de l'équation

$$(E_a)$$
 $x^a = \ln(x)$.

2. Tracer dans un même repère la courbe représentative de $x \mapsto \ln x$ et celle de la fonction $x \mapsto x^{a_0}$ où a_0 est l'unique réel strictement positif tel que l'ensemble des solutions de E_{a_0} soit un singleton.

^{1.} Le nombre de $u \in [0,\pi]$ qui sont solution de l'équation.