TD 2 - SOMMES

Exercice 1

Le but de cet exercice est de calculer pour $(n,p) \in \mathbb{N}^2$ la somme : $S_p(n) = \sum_{k=0}^n k^p$.

On rappelle la convention $0^0 = 1$.

Partie 1 : Premières valeurs

- 1) Sans justifications, rappeler les valeurs de
 - (a) $S_0(n)$,
 - **(b)** pour $p \in \mathbf{N}$, $S_p(1)$,
 - (c) pour $n \in \mathbb{N}$, $\hat{S}_1(n)$.
- 2) Dans cette question, on cherche à retrouver la valeur de $S_2(n)$ à partir de celles de $S_1(n)$ et de $S_0(n)$.
 - (a) Pour $n \in \mathbb{N}$, en s'aidant du calcul de $\sum_{k=0}^{n} (k+1)^3 k^3$ de deux façons différentes, donner une relation simple entre n, $S_2(n)$, $S_1(n)$ et $S_0(n)$.
 - (b) En déduire la valeur de $S_2(n)$ (sous forme factorisée).

Partie 2 : Cas général

On adapte la méthode précédente pour obtenir une relation de récurrence générale entre les différentes sommes d'Euler.

3) Soit $p \in \mathbb{N}$. Montrer qu'il existe $(a_0, a_1, \dots, a_p) \in \mathbb{N}^{p+1}$ tel que que pour tout $k \in \mathbb{N}$

$$(k+1)^{p+1} - k^{p+1} = \sum_{i=0}^{p} a_i k^i.$$

On précisera la valeur des $(a_i)_{i \in \llbracket 0,p \rrbracket}$.

4) En déduire que pour tout couple $(n, p) \in \mathbf{N}^2$,

$$\sum_{k=0}^{p} {p+1 \choose k} S_k(n) = (n+1)^{p+1}.$$

5) En déduire alors que pour tout couple $(n, p) \in \mathbb{N}^2$,

$$(p+1)S_p(n) = (n+1)^{p+1} - \sum_{k=0}^{p-1} {p+1 \choose k} S_k(n).$$

6) Procéder, en utilisant cette relation, au calcul pour $n \in \mathbb{N}$ de $S_3(n)$.