TD 1 - SOMMES

Exercice 1

1) On définit la suite (u_n) par $u_1 \in \mathbf{R}$ et

$$\forall n \in \mathbf{N}^*, \ u_{n+1} = \sum_{k=1}^n u_k.$$

- (a) Trouver une relation de récurrence simple entre u_{n+1} et u_n .
- (b) En déduire la valeur de u_n en fonction de n et de u_1 .
- (c) En se servant uniquement de la relation $\forall n \in \mathbf{N}^*, \ u_{n+1} = \sum_{k=1}^n u_k$; démontrer à nouveau l'expression de u_n trouvée à la question précédente. On utilisera pour cela une récurrence forte.
- 2) On définit la suite (v_n) par $v_1 = 2$ et

$$\forall n \in \mathbf{N}^*, \ v_{n+1} = \sum_{k=1}^n k v_k.$$

Calculer v_n en fonction de n.

Exercice 2 (Faux Newton)

Pour tout entier $n \in \mathbb{N}$, on pose

$$u_n = \sum_{k=0}^n \binom{2n-k}{n} 2^k.$$

- 1) Calculer u_0, u_1 et u_2 .
- 2) Soit $n \in \mathbb{N}$ fixé. Montrer que pour tout entier $k \in [0, n]$,

$$\binom{2n+2-k}{n+1} = \binom{2n+1-k}{n} + \binom{2n+1-k}{n+1}.$$

3) En déduire que

$$u_{n+1} = 2^{n+1} + {2n+1 \choose n} + \sum_{k=1}^{n} {2n+1-k \choose n} 2^k + \sum_{k=0}^{n} {2n+1-k \choose n+1} 2^k.$$

4) Montrer que

(a)
$$2u_n = 2^{n+1} + \sum_{k=1}^n {2n+1-k \choose n} 2^k$$
,

(b)
$$u_{n+1} - {2n+2 \choose n+1} = 2\sum_{k=0}^{n} {2n+1-k \choose n+1} 2^k,$$

(c)
$$\binom{2n+1}{n} = \frac{1}{2} \binom{2n+2}{n+1}$$
.

- 5) Déduire des questions précédentes une expression de u_{n+1} sous la forme $u_{n+1} = \alpha u_n + \beta u_{n+1}$ avec $(\alpha, \beta) \in \mathbf{R}^* \times \mathbf{R}$.
- 6) Donner une expression très simple de u_n en fonction de n.