SUITES NUMÉRIQUES - RELATIONS DE COMPARAISON

On ne s'intéresse pas encore aux suites définies implicitement.

Pour commencer...

Exercice 1

Classer les suites, dont les termes généraux sont les suivants, par ordre de négligeabilité:

1)
$$\frac{1}{n}$$
, $\frac{1}{n^2}$, $\frac{\ln n}{n}$, $\frac{\ln n}{n^2}$, $\frac{1}{n \ln n}$

1)
$$\frac{1}{n}$$
, $\frac{1}{n^2}$, $\frac{\ln n}{n}$, $\frac{\ln n}{n^2}$, $\frac{1}{n \ln n}$ 2) n , n^2 , $n \ln n$, $\sqrt{n} \ln n$, $\frac{n^2}{\ln n}$

Exercice 2 (Vrai-Faux)

Dire pour chaque proposition si elle est vraie ou fausse. Le démontrer.

- 1) Si $u_n \sim v_n$ alors pour toute application f définie sur \mathbf{R} , $f(u_n) \sim f(v_n)$,
- 2) Si $u_n = o(n)$ et $v_n = o(n)$, alors $(u_n v_n) = o(0)$
- 3) Si $u_n \sim \frac{1}{n}$ alors $u_n > 0$ à partir d'un certain rang
- 4) Si $u_n \sim v_n$ alors $u_n v_n$ tend vers 0,
- 5) Si $\lim_{n \to +\infty} (u_n v_n) = 0$ et si (v_n) ne s'annule pas alors $u_n \sim v_n$.

Exercice 3 (*)

Montrer que $n! = o(n^n)$ de deux façons différentes.

Exercice 4 (*) (à connaître)

Calculer

$$\lim_{m\to +\infty} \lim_{n\to +\infty} \left(1-\frac{1}{n}\right)^m, \lim_{n\to +\infty} \lim_{m\to +\infty} \left(1-\frac{1}{n}\right)^m \quad \text{et} \quad \lim_{n\to +\infty} \left(1-\frac{1}{n}\right)^n.$$

Exercice 5 (**) (passage au logarithme)

Soient (u_n) et (v_n) deux suites strictement positives telles que $u_n \sim v_n$.

- 1) Montrer que si $u_n \xrightarrow[n \to +\infty]{} \ell \in [0, 1[\cup]1, +\infty[\cup\{+\infty\}, \text{ alors } \ln(u_n) \sim \ln(v_n).$
- 2) Si $u_n \xrightarrow[n \to +\infty]{} 1$, trouver un exemple pour lequel l'équivalent ne passe pas au logarithme.

CALCULS

Exercice 6 (*)

Donner la nature de la suite, et sa limite éventuelle

1)
$$\forall n \in \mathbf{N}^*, \ u_n = \frac{(-2)^n}{n^2}.$$

$$2) \quad \forall n \in \mathbf{N}^*, \ u_n = \frac{\ln n}{n}.$$

Exercice 7 (*)

Donner un équivalent simple :

1)
$$\forall n \in \mathbf{N}^*, \ u_n = \frac{1}{n} \sin \frac{1}{n}.$$

2)
$$\forall n \in \mathbf{N}^*, \ u_n = \frac{3n^2 - 2n + 1}{n\sqrt{n} + n - 1}.$$

3)
$$\forall n \in \mathbf{N}^*, \ u_n = \frac{3n^2 - 2n + 1}{n^6 - 2n^4 - 9}.$$

4)
$$\forall n \in \mathbf{N}^*, \ u_n = \frac{n^3 + 5n}{5n^3 + \cos(n) + \frac{1}{n^2}}.$$

5)
$$\forall n \in \mathbb{N}, \ u_n = \sqrt{1 + n^2} - \sqrt{1 + n}$$

6)
$$\forall n \in \mathbb{N}^*, \ u_n = \sqrt{n^2 + 1} - \sqrt{n^2 - 1}.$$

7)
$$\forall n \in \mathbf{N}^*, \ u_n = \frac{\sqrt{(n+1)(n+3)} + \sqrt{n}}{n}.$$

8)
$$\forall n \in \mathbf{N}, \ u_n = n - \sqrt{(n+1)(n+3)} - \sqrt{n}.$$

Exercice 8 (*)

Trouver un équivalent simple et la limite éventuelle :

1)
$$u_n = \frac{2n^2 + n \ln^2 n}{n^2 \ln n + \sqrt{n}}$$
. 2) $u_n = \frac{n + e^n}{2^n + 3^n}$.

2)
$$u_n = \frac{n + e^n}{2^n + 3^n}$$

$$3) \quad u_n = e^n + n^e.$$

MPSI

Exercice 9 (**)

Trouver un équivalent simple et la limite éventuelle :

- $1) \quad u_n = \sqrt{n+1} + \sqrt{n}.$
- $2) \quad u_n = \sqrt{n+1} \sqrt{n}.$
- 3) $u_n = \sqrt[3]{n^3 + 1} n$.
- 4) $u_n = \sqrt{n + \sqrt{n+1}} \sqrt{n \sqrt{n+1}}$.
- 5) $u_n = \frac{\ln(n+1) \ln n}{\sqrt{n+1} \sqrt{n}}$.
- 6) $u_n = (n+1)^{n+1} n^n$.

Exercice 10 (*)

Trouver un équivalent simple :

 $1) \quad u_n = \sin\frac{1}{n} - \tan\frac{1}{n}.$

2) $u_n = \frac{\sin\frac{1}{n}}{e^{\frac{1}{n}} - 1}$.

Exercice 11 (**)

Soit $k \in \mathbf{N}^*$ et $x \in]0,1[$ fixés.

- 1) Montrer que $\binom{n}{k} \sim \frac{n^k}{k!}$
- 2) En déduire que la suite $\binom{n}{k}x^n$ admet une limite quand $n \to +\infty$, et donner la valeur de cette limite.

3 Entraînement

Exercice 12 (**)

Montrer que

$$\sum_{k=1}^{n} k! \sim n!.$$

Exercice 13 (**)

Soit (u_n) une suite décroissante telle que

$$u_n + u_{n+1} \sim \frac{1}{n}.$$

- 1) Montrer que (u_n) converge vers 0^+ .
- 2) Donner un équivalent simple de u_n en $+\infty$.
- 3) Montrer à l'aide d'un contre-exemple que si (u_n) n'est pas supposée décroissante, mais positive convergente vers 0, alors l'équivalent simple trouvé précédemment n'est pas toujours valable.

Exercice 14 (***)

Soit (u_n) la suite définie par

$$u_0 > 0 \text{ et } \forall n \in \mathbf{N}, \quad u_{n+1} = u_n e^{-u_n}.$$

- 1) Montrer que (u_n) converge vers 0.
- 2) Montrer que $u_{n+1} = u_n u_n^2 + o(u_n^2)$.
- 3) Montrer que $\lim_{n\to+\infty} \frac{1}{u_n} \frac{1}{u_{n+1}} = -1$.
- 4) En déduire¹ que $u_n \sim \frac{1}{n}$.

¹Penser à Césaro.