TD 3 - SUITES

Exercice 1

On considère la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_0\in]0,1[$, et pour tout $n\in\mathbb{N}, x_{n+1}=x_n-x_n^2$.

- 1) Dresser le tableau de variation de la fonction f à valeurs dans \mathbf{R} , définie sur [0,1], par : $f(x) = x x^2$.
- 2) (a) Montrer que la suite $(x_n)_{n \in \mathbb{N}}$ est monotone et convergente.
 - (b) Déterminer la limite de la suite $(x_n)_{n \in \mathbb{N}}$.
- 3) (a) Établir pour tout $n \in \mathbf{N}^*$, l'encadrement $0 < x_n \le \frac{1}{n+1}$.
 - (b) Retrouver ainsi la limite de la suite $(x_n)_{n \in \mathbb{N}}$.
- 4) Soit $(v_n)_{n \in \mathbb{N}}$ la suite définie par : pour tout $n \in \mathbb{N}$, $v_n = nx_n$.
 - (a) Montrer que la suite $(v_n)_{n \in \mathbb{N}}$ est croissante.
 - (b) En déduire que la suite $(v_n)_{n\in\mathbb{N}}$ converge vers un réel ℓ que l'on ne demande pas de calculer.
 - (c) Montrer que $0 < \ell \le 1$.
- 5) On considère les suites $(w_n)_{n\in\mathbb{N}}$ et $(S_n)_{n\in\mathbb{N}}$ définies par :

$$\forall n \in \mathbf{N}, \quad w_n = n (v_{n+1} - v_n) \quad \text{et} \quad S_n = \sum_{k=1}^n \frac{w_k}{k}.$$

- (a) Montrer que la suite $(S_n)_{n \in \mathbb{N}}$ est convergente.
- (b) Exprimer pour tout $n \in \mathbb{N}$, w_n en fonction de x_n et de v_n .
- (c) En déduire que la suite $(w_n)_{n \in \mathbb{N}}$ converge vers $\ell (1 \ell)$.
- (d) À l'aide d'un raisonnement par l'absurde, montrer que $\ell=1$.

 Indication : on pourra utiliser un résultat déjà prouvé en exercice.

Exercice 2

On considère deux réels A et B tels que $0 < A \leq B$. On définit deux suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ par récurrence :

$$x_0 = A, y_0 = B \text{ et}, \forall n \in \mathbf{N}, x_{n+1} = \frac{x_n + y_n}{2} \text{ et } y_{n+1} = \sqrt{x_{n+1} y_n}.$$

- 1) Justifier que ces deux suites sont correctement définies et à termes strictement positifs.
- 2) Justifier que l'on peut définir un réel $\alpha \in \left[0, \frac{\pi}{2}\right]$ tel que $A = B \times \cos(\alpha)$.

 On ne demande pas la valeur de α .
- 3) Vérifier que, pour tout $n \in \mathbf{N}^*$, $\frac{x_n}{y_n} = \frac{y_n}{y_{n-1}}$ et $\frac{y_{n+1}}{y_n} = \sqrt{\frac{1 + \frac{y_n}{y_{n-1}}}{2}}$.
- 4) Expression du quotient $\frac{y_n}{y_{n-1}}$

On rappelle que, pour tout réel x, $\cos\left(2x\right) = \cos^2\left(x\right) - \sin^2\left(x\right) = 2\cos^2\left(x\right) - 1 = 1 - 2\sin^2\left(x\right)$ et $\sin\left(2x\right) = 2\cos\left(x\right)\sin\left(x\right)$.

- (a) Montrer que, pour tout $\theta \in \left[0, \frac{\pi}{2}\right], \sqrt{\frac{1+\cos\theta}{2}} = \cos\left(\frac{\theta}{2}\right)$.
- (b) En déduire par récurrence que, pour tout $n \in \mathbf{N}^*$, $\frac{y_n}{y_{n-1}} = \cos\left(\frac{\alpha}{2^n}\right)$.
- 5) Expression et limite de y_n
 - (a) On suppose que $\alpha \neq 0$, montrer alors que, pour tout $n \in \mathbb{N}$, $y_n = \frac{B \sin \alpha}{2^n \sin \left(\frac{\alpha}{2^n}\right)}$.
 - (b) Si $\alpha = 0$, donner l'expression de y_n en fonction de $n \in \mathbb{N}$.
 - (c) Rappeler la limite de $\frac{\sin x}{x}$ lorsque x tend vers 0; et en déduire la limite de y_n quand n tend vers $+\infty$.

 On pourra faire apparaître un taux d'accroissement en 0 pour calculer $\lim_{x\to 0} \frac{\sin(x)}{x}$.