ANALYSE ASYMPTOTIQUE

Notation : $DL_k(x)$ désigne le développement limité à l'ordre k en x

Exercice 1 (*)

Faire un développement limité (ou asymptotique) de

1.
$$DL_3(0)$$
 de $\ln\left(\frac{x^2+1}{x+1}\right)$

2.
$$DL_3(0) \operatorname{de} \ln(1 + \sin x)$$

3.
$$DL_3(1)$$
 de $\cos(\ln(x))$

4.
$$DL_6(0)$$
 de $\ln(\cos x)$

5.
$$DL_7(0)$$
 de $\sin(\arctan(x))$

6.
$$DL_4(1) \operatorname{de} (\ln x)^2$$

7.
$$DL_3(0)$$
 de $e^{\sin x}$

8.
$$DL_8(0)$$
 de $\sin^6 x$

9.
$$DL_2(0)$$
 de $\frac{\arctan x - x}{\sin x - x}$

10.
$$DL_3(0)$$
 de $\ln \left(\tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right)$

11.
$$DL_3\left(\frac{\pi}{4}\right)$$
 de $\ln\sin x$

12.
$$DL_3(0)$$
 de $(1+x)^{\frac{1}{x}}$

13.
$$DA_2(+\infty) \text{ de } x\left(\sqrt{x^2 + \sqrt{x^4 + 1}} - x\sqrt{2}\right)$$

14.
$$DA_4(+\infty)$$
 de $\sqrt[3]{x^3+x} - \sqrt[3]{x^3-x}$

Exercice 2 (**)

Donner le développement à l'ordre 5 en 0 de arcsin par les deux méthodes suivantes

1.
$$\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$$

2.
$$\sin(\arcsin x) = x \text{ pour } x \in [-1; 1]$$

Exercice 3 (*)

Déterminer les développements limités suivants :

1.
$$DL_3(0)$$
 de $\frac{\ln(1+x)}{e^x-1}$

2.
$$DL_2(0)$$
 de $\frac{\arctan x}{\tan x}$

3.
$$DL_2(1)$$
 de $\frac{x-1}{\ln x}$

Exercice 4 (**) (Équivalent simple)

Donner une équivalent simple en 0 de

$$(1+\sin x)^x - (1+x)^{\sin x}$$

Exercice 5 (**)

Déterminer les développements limités suivants :

1.
$$DL_{10}(0)$$
 de $\int_x^{x^2} \frac{dt}{\sqrt{1+t^4}}$.

2.
$$DL_3(2\pi)$$
 de $\sin \sqrt{x^2 - 3\pi^2}$

Exercice 6

Soit $f:]-1,0[\cup]0,+\infty[\to\mathbb{R}$ définie par

$$f(x) = \frac{\ln(1+x) - x}{x^2}$$

Montrer que f peut être prolongée par continuité en 0 et que ce prolongement est alors dérivable en 0.

Quelle est alors la position relative de la courbe de f par rapport à sa tangente en ce point ?

Exercice 7

Montrer que la fonction

$$f: x \mapsto \frac{x}{\mathrm{e}^x - 1}$$

peut être prolongée en une fonction de classe \mathcal{C}^1 sur $\mathbb{R}.$

Exercice 8 (**) (Étude locale d'une réciproque) Montrer que l'application $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = xe^{x^2}$ admet une application réciproque définie sur \mathbb{R} et former le $DL_5(0)$ de f^{-1} .

Exercice 9 (**)

Soit f la fonction définie par

$$f(x) = x^2 \ln \left(\frac{x+1}{x-1} \right)$$

Étudier la branche infinie de f en $+\infty$ et donner la position des éventuelles asymptotes par rapport à la courbe.

Exercice 10 (**)

Soient a un réel non nul et f la fonction définie au voisinage de 0 par

$$f(x) = \frac{\ln(1+ax)}{1+x}$$

Déterminer les éventuelles valeurs de a pour lesquelles f présente un point d'inflexion en 0.

Un point d'inflexion est un changement de sens de courbure de la courbe.