LIMITES ET CONTINUITÉ

1 LIMITES

Exercice 1 (*)

Pour chacune des fonctions suivantes dire si elle admet une limite au point a, une limite à droite, à gauche.

Si elle est définie en a, étudier sa continuité en a, à droite de a, à gauche de a.

Si elle n'est pas définie en a, étudier si elle admet un prolongement par continuité en a.

prolongement par continuité en
$$a$$
.
1) $x \mapsto \frac{1}{x-1}$ en $a=1$.

$$2) \quad x \mapsto \frac{|x|}{x} \qquad \text{en } a = 0$$

3)
$$x \mapsto \lfloor x \rfloor$$
 en $a = 1$.

$$4) \quad x \mapsto x \left| 1 + \frac{1}{x} \right| \qquad \text{en } a = 0$$

$$5) \quad x \mapsto x \sin \frac{1}{x} \qquad \text{en } a = 0.$$

$$6) \quad x \mapsto \frac{\ln x}{\sqrt{x}} \qquad \text{en } a = 0.$$

7)
$$x \mapsto \frac{2x^2 - 5x + 1}{x^2 - 1}$$
 en $a = 1$.

8)
$$x \mapsto \sqrt{x} \ln x$$
 en $a = 0$.

9)
$$x \mapsto |x| \ln |x|$$
 en $a = 0$.

$$10) \quad x \mapsto x^{\pi} \qquad \text{en } a = 0.$$

11)
$$x \mapsto \frac{2x^2 - 5x + 3}{x^2 - 1}$$
 en $a = 1$.

12)
$$x \mapsto \frac{x^3 - 2x^2 + 1}{x^2 - 7x}$$
 en $a = 0$.

Exercice 2 (**)

Déterminer les limites suivantes si elles existent :

1.
$$\lim_{x \to 0} x \left| \frac{1}{x} \right|$$
.

$$2. \lim_{x \to 1^+} \ln(x) \ln(\ln x).$$

Exercice 3 (***)

$$f: x \mapsto \frac{x^x}{|x|^{\lfloor x \rfloor}}$$

La fonction admet-elle une limite en $+\infty$? Indication: étudier f(n) et $f(n+\frac{1}{2})$.

2 FONCTIONS USUELLES

Exercice 4 (**)

Étudier la continuité sur R de l'application

$$f: x \mapsto |x| + \sqrt{x - |x|}$$
.

Exercice 5 (**)

Soit $f: \mathbf{R} \to \mathbf{R}$ définie par

$$f: x \mapsto \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{\mathrm{e}^x + \mathrm{e}^{-x}}.$$

- 1. Déterminer le domaine de définition de f. On le notera D.
- 2. Déterminer la parité de f.
- 3. Montrer que f est bijective de ${\bf R}$ dans un intervalle à déterminer.
- 4. Représenter graphiquement f et f^{-1} dans un repère orthonormé (indiquer ses éventuelles asymptotes et ses tangentes remarquables).

Exercice 6 (***)

Étudier la continuité de la fonction définie sur \mathbf{R}_{+} .

$$f: x \mapsto \sup_{n \in \mathbb{N}} \frac{x^n}{n!}$$

3 Continuité

Exercice 7 (*)

Montrer qu'un polynôme réel de degré impair admet au moins une racine réelle.

Exercice 8 (**)

Montrer qu'une application continue périodique sur ${\bf R}$ est bornée et atteint ses bornes.

Exercice 9 (*)

Soit $f \in C^0([0,1];[0,1])$.

Montrer que f admet un point fixe dans [0,1], c'est-àdire $x_0 \in [0,1]$ tel que $f(x_0) = x_0$.

Exercice 10 (**)

Soit $f \in \mathcal{C}^0(\mathbf{R}_+, \mathbf{R}_+)$ telle que $\lim_{x \to +\infty} = \ell < 1$.

Montrer que f admet un point fixe.

Exercice 11 (**)

Montrer que les seules applications continues sur \mathbf{R} à valeurs dans \mathbf{Z} sont les applications constantes.

Exercice 12 (**)

Soit $f: \mathbf{R}_+ \to \mathbf{R}_+$, continue, telle que

$$\forall x \in \mathbf{R}_{\perp}^*, \ f(x) < x.$$

- 1. Montrer que f(0) = 0.
- 2. Montrer que pour tout $(a,b) \in \mathbf{R}_+^*$, avec $a \leq b$, il existe $M \in [0,1[$, tel que

$$\forall x \in [a, b], \ f(x) \leqslant Mx.$$

Exercice 13 (**)

- 1. Soit f une application continue surjective de \mathbf{R}_+ sur \mathbf{R} . Montrer que pour tout $y \in \mathbf{R}$, y admet une infinité d'antécédents par f.
- 2. Ce résultat est-il aussi valable si l'application est de ${\bf R}_+^*$ sur ${\bf R}$? Justifier.
- 3. Donner l'exemple d'une application continue surjective de ${\bf R}_+$ sur ${\bf R}$. Démontrer que l'exemple est valable.

Exercice 14 (***)

Soient a < b deux réels, et f une fonction croissante sur [a,b] et continue en a.

Montrer que f est croissante sur [a, b].

Faire de même avec la stricte croissance.

4 Appropondissement

Exercice 15 (**)

1. Prouver le théorème suivant :

Soit f une fonction **monotone** sur un intervalle I, alors f(I) est un intervalle si et seulement si f est continue sur I.

2. Trouver une fonction non monotone, telle que f(I) soit un intervalle, mais f non continue.

Exercice 16 (**)

Soit f strictement décroissante et continue sur \mathbf{R} . Montrer que f admet un unique point fixe.

Exercice 17 (***)

Soit $f: \mathbf{R}_+^* \to \mathbf{R}$ une application croissante telle que $x \mapsto \frac{f(x)}{x}$ soit décroissante. Montrer que f est continue.

Exercice 18 (***)

Soit f continue sur [0,1] à valeurs dans [0,1].

- 1. Montrer que $\forall n \in \mathbf{N}^*, \exists a_n \in [0,1], f(a_n) = a_n^n$.
- 2. En supposant f strictement décroissante, montrer que $\forall n \in \mathbf{N}^*, a_n$ est unique et étudier la suite (a_n) .

Exercice 19 (***)

Soit $f:[0,+\infty[\to [0,+\infty[$ continue vérifiant

$$f \circ f = \mathrm{Id}.$$

Déterminer f.

Exercice 20 (***)

Soit $f \in \mathcal{C}([0,1]; \mathbf{R}$ telle que f(0) = f(1). Montrer que

$$\forall n \in \mathbf{N}^*, \exists \alpha_n \in [0,1], \text{ tel que } f\left(\alpha_n + \frac{1}{n}\right) = f(\alpha_n).$$

5 SUITES IMPLICITES

Exercice 21

Soit $n \geqslant 3$.

- 1. Montrer que l'équation $e^x = x^n$ admet deux solutions sur $]0, +\infty[$, notées u_n et v_n et telles que $1 < u_n < e < v_n$.
- 2. Montrer que la suite (u_n) converge et déterminer sa limite.
- 3. Déterminer $\lim_{n \to +\infty} v_n$.
- 4. Montrer que $v_n \sim n \ln n$.

Exercice 22

Pour tout entier $n \geqslant 1$, on considère la fonction f_n définie sur \mathbf{R}_+ par

$$f_n(x) = \sum_{k=1}^n kx^k.$$

- 1. Pour tout $n \ge 1$, montrer que l'équation $f_n(x) = 1$ admet une unique solution sur \mathbf{R}_+ que l'on notera u_n .
- 2. En comparant $f_{n+1}(u_n)$ et $f_{n+1}(u_{n+1})$, montrer que la suite u est monotone.
- 3. En déduire que la suite converge.

Exercice 23

Soit $n \in \mathbf{N}^*$,

On considère la fonction f_n définie sur **R** par

$$f_n(x) = x^{n+1} - x^{n-1} + 1$$

- 1. Dresser le tableau de variations de f_n , préciser le nombre de solutions de l'équation $f_n(x) = 3 + \frac{1}{n}$.
- 2. On note x_n l'unique solution positive de l'équation précédente.
 - (a) Déterminer x_1 .
 - (b) Montrer que $\forall n \in \mathbf{N}^*, x_n \geqslant 1$.
 - (c) Étudier le signe de $f_{n+1}(x) f_n(x)$ pour tout $x \ge 1$. En déduire la monotonie de la suite $(x_n)_{n \in \mathbb{N}^*}$
- 3. Montrer que la suite $(x_n)_{n \in \mathbb{N}^*}$ converge et déterminer sa limite.