DÉRIVÉES USUELLES

A Fonctions usuelles

f'(x)	Domaine dérivabilité
0	R
$-\frac{1}{x^2}$	\mathbf{R}^*
$\frac{1}{2\sqrt{x}}$	\mathbf{R}_{+}^{*}
nx^{n-1}	R
$-nx^{-n-1} = -n\frac{1}{x^{n+1}}$	\mathbf{R}^*
ax^{a-1}	\mathbf{R}_{+}^{*}
e^x	R
$\frac{1}{x}$	\mathbf{R}_{+}^{*}
	0 $-\frac{1}{x^2}$ $\frac{1}{2\sqrt{x}}$ nx^{n-1} $-nx^{-n-1} = -n\frac{1}{x^{n+1}}$ ax^{a-1} e^x $\frac{1}{x^n}$

f(x)	f'(x)	Domaine dérivabilité
$\cos(x)$	$-\sin(x)$	R
$\sin(x)$	$\cos(x)$	R
$\tan(x)$	$1 + \tan^2 x = \frac{1}{\cos^2(x)}$	$\boxed{\mathbf{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbf{Z} \right\}}$
$\arctan(x)$	$\frac{1}{1+x^2}$	R

B Opérations sur les dérivées

linéarité Si (u, v) dérivables en $a, (\lambda, \mu) \in \mathbf{R}^2$, alors $(\lambda u + \mu v)$ est dérivable en a

produit Si (u, v) dérivables en a, alors uv est dérivable en a

inverse Si v dérivable en a et $v(a) \neq 0$, alors $\frac{1}{v}$ est dérivable en a

quotient Si (u,v) dérivables en a et $v(a) \neq 0$, alors $\frac{u}{v}$ est dérivable en a

$$(\lambda u + \mu v)'(a) = \lambda u'(a) + \mu v'(a)$$

$$(u v)'(a) = u'(a) v(a) + u(a) v'(a)$$

$$\left(\frac{1}{v}\right)'(a) = -\frac{v'(a)}{(v(a))^2}$$

$$\left(\frac{u}{v}\right)'(a) = \frac{u'(a)v(a) - u(a)v'(a)}{(v(a))^2}$$

Composée

Soient $u: I \to J$ et $f: J \to \mathbf{R}$

Si u dérivable en $a \in I$ et f est dérivable en u(a), alors $f \circ u$ est dérivable en a et

$$f(f \circ u)'(a) = u'(a)f'(u(a))$$

Application réciproque

Si f est une bijection de I sur J = f(I), dérivable sur I, alors f^{-1} est dérivable en $y \in J$ si et seulement si f' ne s'annule pas en $f^{-1}(y)$, et dans ce cas

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$$