Nombres complexes

Forme cartésienne	Forme trigonométrique	Forme polaire
$z = x + iy$, avec $(x, y) \in \mathbf{R}^2$	$z = \rho \left(\cos \theta + i \sin \theta\right)$	$z = \rho e^{i\theta}$
avec $x = \Re (z) = \frac{1}{2} (z + \overline{z})$ $y = \Im (z) = \frac{1}{2i} (z - \overline{z})$	avec $\rho \ge 0, \ \theta \in]-\pi,\pi]$	$\rho \ge 0, \ \theta \in]-\pi, \tau$
$\overline{z} = x - iy$	$\overline{z} = \rho \left(\cos \theta + i \sin(-\theta)\right)$	$\overline{z} = \rho e^{-i\theta}$
$ z = \sqrt{x^2 + y^2}$ et $z\overline{z} = z ^2$	$ z = \rho$ et $\arg(z) = \theta$	$ z = \rho$
		et $arg(z) = \theta$

- Présence de sommes \Rightarrow forme cartésienne (exception : utilisation de la technique de l'angle moyen)
- Présence de produits et puissances \Rightarrow forme polaire

Mettre sous forme trigonométrique ou exponentielle $(z \neq 0)$

$$z=a+ib \longrightarrow \rho=|z|=\sqrt{a^2+b^2}$$

$$\longrightarrow \text{recherche } \theta \text{ tel que } \cos\theta=\frac{a}{\rho} \text{ et } \sin\theta=\frac{b}{\rho}$$

Conjugué

$$\begin{array}{ll} (involutivit\acute{e}) & \overline{\overline{z}} = z \; . \\ (r\grave{e}gles \; de \; calcul) & \overline{z \times z'} = \overline{z} \times \overline{z'} \quad \text{et} \quad \overline{z + z'} = \overline{z} + \overline{z'} \quad \text{et} \quad \overline{\frac{z}{z'}} = \overline{\frac{z}{z'}} \; . \\ & \text{Pour } \lambda \in \mathbf{R}, \quad \overline{\lambda z} = \lambda \overline{z} \; . \end{array}$$

Module

Inégalité triangulaire
$$|z'| |z'|$$
 égalité ssi $\exists \lambda \in \mathbf{R}_+, \ z = \lambda z' \text{ ou } z' = \lambda z.$ (colinéaires de même sens)

Argument

$$|zz'| = |z| |z'| \quad \text{et} \quad \left| \frac{z}{z'} \right| = \frac{|z|}{|z'|}$$

$$Inégalité\ triangulaire$$

$$\arg(-z) = \arg(z) + \pi \pmod{2\pi}.$$

$$\arg(\bar{z}) = -\arg(z) \pmod{2\pi}.$$

$$\operatorname{pour} \lambda > 0, \quad \operatorname{arg}(\lambda z) = \operatorname{arg}(z).$$

Interprétations géométriques

	Vecteurs	Points
Affixe:	affixe de \overrightarrow{u} : z_1	affixe de \overrightarrow{AB} : $z_B - z_A$
	affixe de \overrightarrow{v} : z_2	
Distance:	$ \overrightarrow{u} = z_1 $	$AB = z_B - z_A $
Angle:	rg(z)	$\arg\left(\frac{z_B}{z_A}\right) = \arg z_B - \arg z_A$
		$=\widehat{\overrightarrow{OA}},\widehat{\overrightarrow{OB}}$
Alignement	: z_1 et z_2 colinéaires	A, B, C alignés
	$\iff \exists \lambda \in \mathbf{R} \text{ tel que}$	$\iff \overrightarrow{AB} = \lambda \overrightarrow{AC} \text{ ou } \overrightarrow{AC} = \lambda \overrightarrow{AB}$
	$z_1 = \lambda z_2$ ou $z_2 = \lambda z_1$	$\iff \begin{cases} z_B - z_A = \lambda (z_C - z_A) \\ \text{ou} z_C - z_A = \lambda (z_B - z_A) \end{cases}$
	$\iff z_1\overline{z_2}\in\mathbf{R}$	$\iff (z_B - z_A) (\overline{z_C - z_A}) \in \mathbf{R}$
	$\iff \arg(z_2) = \arg(z_1) [\pi]$	$\iff \arg(z_B - z_A) = \arg(z_C - z_A) [\pi]$
	$\iff \frac{z}{z'} \in \mathbf{R}^*$	$\iff \frac{z_B - z_A}{z_C - z_A} \in \mathbf{R}^*$

Méthodes:
$$z \in \mathbf{R} \iff \begin{cases} z = \overline{z} \\ \text{ou} & \mathfrak{Im}(z) = 0 \end{cases}$$

$$z \in i\mathbf{R} \iff \begin{cases} z = -\overline{z} \\ \text{ou} & \mathfrak{Re}(z) = 0 \end{cases}$$

$$z = 0 \iff \begin{cases} \mathfrak{Re}(z) = \mathfrak{Im}(z) = 0 \\ \text{ou} & |z| = 0 \end{cases}$$