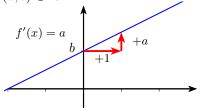
FONCTIONS USUELLES VUES AU LYCÉE.

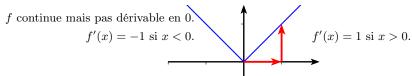
1 ÉQUATIONS DE DROITES ET PORTIONS DE DROITES

Fonctions linéaire et affine : f(x) = ax + b, $(a, b) \in \mathbf{R}^2$.


a: coefficient directeur,

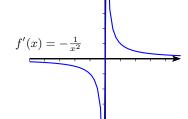
b : ordonnée à l'origine.

 $a > 0 \Rightarrow f$ croissante

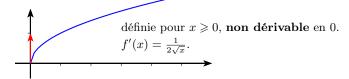

 $a<0\Rightarrow f$ décroissante.

Si b = 0, la fonction est linéaire (lien de proportionnalité)

Fonction valeur absolue : f(x) = |x|


Courbe paire par rapport à l'axe des abscisses.

2 FONCTION INVERSE


Fonction inverse : $f(x) = \frac{1}{x}$

Hyperbole, symétrique par rapport à l'origine, La fonction n'est **pas définie** en 0.

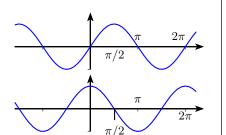
3 FONCTION RACINE

Fonction racine : $f(x) = \sqrt{x}$

4 FONCTIONS TRIGONOMÉTRIQUES

Fonction sinus: $f(x) = \sin x$.

Sinusoïde de période 2π ,


Courbe symétrique par rapport à l'origine.

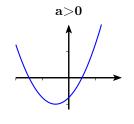
Fonction cosinus: $f(x) = \cos x$.

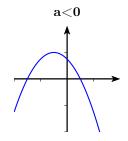
Sinusoïde de période 2π .

Même courbe que $\sin(x)$, translatée de $\frac{\pi}{2}$.

Courbe symétrique par rapport à l'axe des ordonnées.

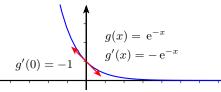
5 FONCTIONS POLYNOMIALES DE DEGRÉ 2


 $f(x) = ax^2 + bx + c$ avec $a, b, c \in \mathbf{R}^3$ et $a \neq 0$.


f'(x) = 2ax + b.

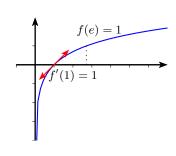
• $a > 0 \Rightarrow$ courbe « vers le haut »


• $a < 0 \Rightarrow$ courbe « vers le bas »


Parabole ax^2 translatée suivant Ox de $-\frac{b}{2a}$ et Oy de $-\frac{\Delta}{4a}$, Le facteur a traduit une dilatation suivant l'axe y.

6 FONCTION EXPONENTIELLE

7 FONCTION LOGARITHME


 $f(x) = \ln(x).$ $f'(x) = \frac{1}{x}.$

Application réciproque de exp.

Courbe symétrique de exp

par rapport à la droite y = x.

 \wedge définie uniquement pour x > 0.

8 Croissances comparées simplifiées

ullet x l'emporte sur le logarithme :

$$\lim_{x\to +\infty} \frac{\ln x}{x} = 0 \quad \text{et} \quad \lim_{x\to 0^+} x \ln x = 0.$$

• l'exponentielle l'emporte sur x

$$\lim_{x \to +\infty} \frac{x}{e^x} = 0 \quad \text{et} \quad \lim_{x \to -\infty} x e^x = 0.$$