Nombres réels

1 Ensembles de nombres

N les entier naturels 0, 1, 2, 3, 4,...

Z les entier relatifs ..., -2, -1, 0, 1, 2, ...

Q les rationnels (quotients de deux entiers) $\frac{1}{4}$, $\frac{2}{825}$, $-\frac{5}{3}$, $3.5 = \frac{35}{10}$, ...

R les réels 0, 5, -4, $\frac{2}{3}$, $-\frac{3}{7}$, π ,...

C les complexes 3 + 2i, 5i, $-2\sqrt{3}(1+i)$, $2e^{i\frac{\pi}{6}}$, ...

• Une étoile en exposant si l'ensemble est privé de l'élément $0: \mathbf{N}^* = \{n \ge 1\}$

• Un « **plus** » en exposant ou en indice pour les positifs : $\mathbf{R}_+ = \mathbf{R}^+ = [0, +\infty[$, $\mathbf{Z}^+ = \mathbf{N}, \ \mathbf{R}_+^* =]0, +\infty[$.

• Un « moins » pour les nombres négatifs (ou nuls) : $\mathbf{R}_{-} =]-\infty, 0]$.

2 Relations binaires

Une relation binaire sur E est une partie $G \subset \mathcal{P}(E \times E)$.

$$\forall (x, y) \in E^2, x \mathcal{R} y \iff (x, y) \in G.$$

• \mathscr{R} est **réflexive** si $\forall x \in E, x\mathscr{R}x$.

• \mathscr{R} est symétrique si $\forall (x, y) \in E^2, x\mathscr{R}y \Rightarrow y\mathscr{R}x$.

• \mathscr{R} est antisymétrique si $\forall (x, y) \in E^2$, $(x\mathscr{R}y \wedge y\mathscr{R}x) \Rightarrow x = y$.

• \mathscr{R} est transitive si $\forall (x, y, z) \in E^3$, $(x\mathscr{R}y \land y\mathscr{R}z) \Rightarrow x\mathscr{R}z$.

x et y de E sont **comparables** suivant \mathscr{R} si $x\mathscr{R}y$ ou $y\mathscr{R}x$.

Relation totale : tous les éléments de E sont comparables, sinon relation partielle.

$relation\ d'\'equivalence:$

- réflexive,
- symétrique,
- transitive.

classes d'équivalence :

$$cl(x) = \dot{x} = \{ y \in E, x \mathcal{R} y \}.$$

L'ensemble des classes d'équivalence forme une partition de E.

${\bf relation}\ {\bf d'ordre}:$

- réflexive,
- antisymétrique,
- transitive.

Relation d'ordre **stricte** \prec $\forall (x, y) \in E^2$,

$$x \prec y \iff (x \preccurlyeq y \land x \neq y).$$

• majorant $M \operatorname{de} A \quad \forall x \in A, \ x \leq M.$

• minorant $m \text{ de } A \quad \forall x \in A, m \leq x.$

• M est le plus grand élément de A si $M \in A$, et $\forall x \in A, x \leq M$.

• M est le plus petit élément de A si $m \in A$, et $\forall x \in A, m \leq x$.

• borne supérieure : plus petit majorant (s'il existe)

• borne inférieure : plus grand minorant (s'il existe).

Caractérisation de la borne supérieure sur ${\bf R}$

Soit A une partie non vide majorée de \mathbf{R} , A admet une borne supérieure et

 $S = \sup A \iff S$ est un majorant de A et $\forall \varepsilon > 0, [S - \varepsilon, S] \cap A \neq \emptyset$.

ou, de façon équivalente :

 $S = \sup A \iff S$ est un majorant de A et $\forall \varepsilon > 0, \exists x \in A, S - \varepsilon \leqslant x$.

3 Valeur absolue et partie entière

Parties positives et négatives : $x^+ = \max(x, 0)$ et $x^- = \max(-x, 0)$. $\forall x \in \mathbf{R}, x = x^+ - x^-$.

Valeur absolue : $|x| = \max\{x, -x\} = x^+ + x^-$. |xy| = |x||y|, $|x^n| = |x|^n$.

Inégalité triangulaire

$$\forall (x,y) \in \mathbf{R}^2, \qquad \Big| |x| - |y| \Big| \leqslant |x+y| \leqslant |x| + |y|.$$

$$\forall (x,y) \in \mathbf{R}^2, \qquad \Big| |x| - |y| \Big| \leqslant |x - y| \leqslant |x| + |y|.$$

Partie entière : $\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1$, ou $\lfloor x \rfloor = \max \{ n \in \mathbf{Z}, n \leqslant x \}$. La fonction $x \mapsto \lfloor x \rfloor$ est croissante sur \mathbf{R} .