Probabilités finies

1 ÉVÉNEMENTS

Univers = ensemble non vide (fini dans ce chapitre). Notation : Ω .

Événement = partie de Ω . Notation : \mathscr{E} est l'ensemble des événements.

Événement élémentaire (ou issue possible) = événement singleton.

 $(A_i)_{i\in I}$ est une famille complète d'événements, si

$$\bigcup_{i \in I} A_i = \Omega, \quad \text{et} \quad \forall (i,j) \in I^2, \text{ si } i \neq j \text{ alors } A_i \cap A_j = \emptyset.$$

Opérations sur les événements :

- « A ou B » = « $A \cup B$ », « A et B » = « $A \cap B$ »,
- « contraire de A » = « \overline{A} ». « $A \cap B = \emptyset$ » = « A et B incompatibles ».

2 Probabilité

Une probabilité \mathbf{P} sur Ω fini, est une application de \mathscr{E} dans \mathbf{R} telle que

- 1) $\forall A \in \mathcal{E}, \ 0 \leq \mathbf{P}(A) \leq 1$,
- 2) $P(\Omega) = 1$,
- 3) Si $A \cap B = \emptyset$, alors $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B)$.

Dans ce cas:

- 4) $\mathbf{P}(\emptyset) = 0$.
- 5) Si $A \subset B$, alors $\mathbf{P}(A) \leq \mathbf{P}(B)$. (croissance)
- 6) $\mathbf{P}(\overline{A}) = 1 \mathbf{P}(A)$.
- 7) $\mathbf{P}(A \cup B) = \mathbf{P}(A) + \mathbf{P}(B) \mathbf{P}(A \cap B)$ (formule du crible).
- 8) $\mathbf{P}\left(\bigcup_{0 \le i \le n} A_i\right) \le \sum_{i=1}^n \mathbf{P}(A_i)$.

 $(\Omega, \mathscr{E}, \mathbf{P})$ est un espace probabilisé fini.

Si P(A) = 0, alors l'événement A est impossible ou négligeable.

Si P(A) = 1, alors l'événement A est **presque certain**.

Description par les événements élémentaires :

$$\forall i \in [1, n], \quad p_i \geqslant 0 \text{ et } \sum_{i=1}^n p_i = 1. \text{ Dans ce cas : } \mathbf{P}(A) = \sum_{\omega_i \in A} p_i.$$

Modèle équiprobable : $\forall i \in [1, n], \ p_i = \frac{1}{n}$ $\mathbf{P}(A) = \frac{\operatorname{Card}(A)}{\operatorname{Card}(\Omega)}$.

3 Probabilités conditionnelles

Probabilité conditionnelle de B sachant A (pour $P(A) \neq 0$)

$$\mathbf{P}(B|A) = \mathbf{P}_A(B) = \frac{\mathbf{P}(A \cap B)}{\mathbf{P}(A)}.$$

Si $\mathbf{P}(A) \neq 0$ et $\mathbf{P}(B) \neq 0$

$$\mathbf{P}_A(B) = \frac{\mathbf{P}_B(A)\mathbf{P}(B)}{\mathbf{P}(A)}.$$

4 Indépendance

$$A$$
 et B sont **indépendants** \iff $\mathbf{P}(A \cap B) = \mathbf{P}(A)\mathbf{P}(B)$.
 \iff $\mathbf{P}_A(B) = \mathbf{P}(B)(\operatorname{si} \mathbf{P}(A) \neq 0)$.

 $(A_i)_{1 \leq i \leq n}$ sont mutuellement indépendants, si pour toute partie J de [1; n]

$$\mathbf{P}\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}\mathbf{P}(A_i) \ .$$

 $\underline{\wedge} \mathbf{P}(A \cap B \cap C) = \mathbf{P}(A)\mathbf{P}(B)\mathbf{P}(C) \quad \neq \quad A, B, C \text{ mutuellement indépendants.}$

5 Trois formules

Formule des probabilités composées

$$\mathbf{P}(A_1 \cap A_2 \cap A_3 \cap \dots \cap A_n) = \mathbf{P}(A_1)\mathbf{P}_{A_1}(A_2)\mathbf{P}_{A_1 \cap A_2}(A_3) \cdots \mathbf{P}_{A_1 \cap A_2 \cap \dots \cap A_{n-1}}(A_n).$$

Formule des probabilités totales

Si $(B_i)_{1 \leq i \leq n}$ est une famille complète d'événements de probabilités non nulles

$$\mathbf{P}(A) = \sum_{i=1}^{n} \mathbf{P}_{B_i}(A) \mathbf{P}(B_i).$$

Formule de Bayes

Soit A un événement de (Ω, \mathbf{P}) , et $(B_i)_{1 \leq i \leq n}$ une famille complète d'événements de probabilités non nulles.

Si $\mathbf{P}(A) > 0$, alors

$$\mathbf{P}_{A}(B_{k}) = \frac{\mathbf{P}_{B_{k}}(A)\mathbf{P}(B_{k})}{\mathbf{P}(A)} = \frac{\mathbf{P}_{B_{k}}(A)\mathbf{P}(B_{k})}{\sum_{i=1}^{n}\mathbf{P}_{B_{i}}(A)\mathbf{P}(B_{i})}.$$