SEMAINE 02 DU 22/09/2025

1 Programme officiel

Les éléments en italique sont des ajouts ou précisions personnels, hors programme officiel.

1.1 Sommes et produits

a) Sommes et produits

Somme et produit d'une famille finie de nombres réels *ou complexes*.

Sommes et produits télescopiques, exemples de changement d'indice et de regroupements de termes La notion de recouvrement disjoint a été donnée.

Expressions simplifiées de
$$\sum_{k=1}^n k, \sum_{k=1}^n k^2, \sum_{k=1}^n x^k.$$

Factorisation de $a^n - b^n$ par a - b.

Sommes doubles. Produit de deux sommes finies

Rappels sur la factorielle, les coefficients binomiaux.

Formule du binôme de Newton dans ${f R}$

Notations
$$\sum_{i \in I} a_i$$
, $\sum_{i=1}^n a_i$, $\prod_{i \in I} a_i$, $\prod_{i=1}^n a_i$.
Cas où I est vide.

Dans la pratique, on est libre de présenter les calculs avec des points de suspension.

Translation, inversion de l'ordre de sommation.

Égalité de Bernoulli, présentée sous la forme $\forall (a, b) \in \mathbf{C}^2, \forall n \in \mathbf{N},$

$$a^{n+1} - b^{n+1} = (a - b) \sum_{k=0}^{n} a^k b^{n-k}$$
$$= (a - b) \sum_{k=0}^{n} a^{n-k} b^k.$$

Exemples de sommes triangulaires, pas de produits de Cauchy.

Convention
$$\binom{n}{k} = 0$$
 pour $k < 0$ ou $k > n$.

Les coefficients binomiaux sont entiers. Formule du triangle de Pascal.

et dans C.

2 EXERCICES À SAVOIR REFAIRE

Suite au désastre de la semaine dernière, les deux premières questions de cours sont reconduites et devront être parfaitement faites sous peine d'avoir une note **très** basse.

L'interrogateur pourra en particulier poser toutes les questions nécessaires pour s'assurer que les récurrences sont bien comprises.

Première question de cours : Tracer une fonction usuelle avec ses éléments remarquables, domaine de définition, dérivabilité, dérivée :

ln, exp,
$$x \mapsto \frac{1}{x}$$
, $x \mapsto x^2$, $x \mapsto \sqrt{x}$, $x \mapsto \cos(x)$, $x \mapsto \sin(x)$.

Ou l'allure des fonctions $x \mapsto x^a = \exp(a \ln x)$ en fonction de $a \in \mathbf{R}$ sur un même graphe.

Deuxième question de cours :

- Toute partie non vide majorée de N admet un plus grand élément.
- $\bullet\,$ « Toute partie non vide de ${\bf N}$ admet un plus petit élément » implique le principe de récurrence
- Montrer que tout nombre entier naturel ≥ 2 admet un diviseur premier.

Troisième question de cours :

- $\bullet \sum_{k=1}^{n} \frac{1}{k(k+1)},$
- $\bullet \sum_{k=0}^{2n} (-1)^k k,$
- $\bullet \ \sum_{i=1}^n \sum_{j=i}^n \frac{1}{j},$
- $\bullet \sum_{i=1}^{n} \sum_{j=1}^{n} \max(i, j),$
- $\bullet \ \sum_{k=1}^{n} k \binom{n}{k}$

La dernière somme peut se faire avec une fonction polynomiale, la formule « sans nom », ou à l'aide de la symétrie des coefficients. (au choix de l'interrogateur).

• preuve de la formule de Bernoulli, du triangle de Pascal, du binôme de Newton.

3 EXERCICES

En priorité sur la manipulation technique des sommes, mais ne pas hésiter à y ajouter des suites usuelles ou la récurrence.