Semaine 06 du 03/11/2025

1 Programme officiel		d) Forme trigonométrique	
a) Nombres complexes Parties réelle et imaginaire.	La construction de C est hors programme.	Forme trigonométrique de $r e^{i\theta}$ $(r > 0)$ d'un nombre complexe non nul. Arguments. Ar-	On veillera, autant que possible, à donner un argument dans] $-\pi$, π [.
Opérations sur les nombres complexes. Brève extension du calcul de $\sum_{k=0}^{n} x^k$, de la	Point du plan associé à un nombre complexe, affixe d'un point, affixe d'un vecteur.	gument d'un produit, d'un quotient. Transformation de $a\cos(t)+b\sin(t)$ en $A\cos(t-\varphi)$.	
factorisation de a^n-b^n , de la formule du binôme. On identifie \mathbf{C} au plan usuel muni d'un repère orthonormé direct (« plan com-	anixe d un point, anixe d un vecteur.	e) Équations algébriques Pour P fonction polynomiale à coefficients complexes admettant a pour racine, factorisation de $P(z)$ par $z-a$.	Provisoirement admis, démontré avec le chapitre sur les polynômes.
plexe »). b) Conjugaison et module		Résolution des équations du second degré dans ${\bf C}.$	Calcul des racines carrés d'un nombre complexe donné sous forme algébrique.
Conjugaison, compatibilité avec les opérations.	Image du conjugué dans le plan complexe.	Somme et produit des racines.	
Module. Relation $ z ^2 = z\overline{z}$, module d'un produit,	Interprétation géométrique de $ z-z' $, cercles et disques.	f) Racines n-ièmes Description des racines n-ièmes de l'unité, d'un nombre complexe non nul donné sous	Notation \mathbf{U}_n . Représentation géométrique.
d'un quotient. Inégalité triangulaire, cas d'égalité.		forme trigonométrique. g) Exponentielle complexe	
c) Nombres complexes de module 1 et trigonométrie		Définition de e^z pour z complexe : $e^z = e^{\Re \mathfrak{e} \ (z)} e^{i \Im \mathfrak{m} \ (z)}$.	Notations $\exp(z)$, e^z . Module et argument de e^z .
Identification du cercle trigonométrique et de l'ensemble des nombres complexes de module 1. Définition de e^{it} pour $t \in \mathbf{R}$. Exponentielle d'une somme.	Notation U.	Exponentielle d'une somme. Pour tous z et z' dans \mathbf{C} , $\mathbf{e}^z = \mathbf{e}^{z'}$ si, et seulement si $z - z' \in 2i\pi \mathbf{Z}$. Résolution de l'équation $\mathbf{e}^z = a$.	
Formules d'Euler. Technique de l'angle moitié : factorisation de $1 + e^{it}$ de $e^{ip} + e^{iq}$	ules d'Euler. Technique de l'angle é : factorisation de $1 \pm e^{it}$, de $e^{ip} \pm e^{iq}$. Les étudiants doivent savoir retrouver les formules donnant $\cos(p) \pm \cos(q)$, $\sin(p) \pm \sin(q)$. Linéarisation, calcul de $\sum_{k=0}^{n} \cos(kt)$ et de $\sum_{k=0}^{n} \sin(kt)$.	h) Interprétation géométrique des nombres complexes	
moter. ractorisation de 12 e , de e 2 e .		Interprétation géométrique des modules et arguments de $\frac{c-a}{b-a}$. Interprétation géométrique des applications $z\mapsto az+b$ pour $(a,b)\in {\bf C}^*\times {\bf C}$.	Traduction de l'alignement et de l'orthogonalité. Similitudes directes. Cas particuliers : translations, homothéties, rotations.
Formule de Moivre.	Les étudiants doivent savoir retrouver les expressions de $\cos(nt)$ et $\sin(nt)$ en fonction de $\cos(t)$ et $\sin(t)$.	Interprétation géométrique de la conjugaison.	

2 QUESTION DE COURS 1 :

Tracer une fonction usuelle avec éléments remarquables, symétries, périodicité, domaine de définition, de dérivabilité, dérivée :

cos, sin, tan, Arcsin, Arccos, Arctan, ch, sh, th,
$$x\mapsto x^{\alpha}$$
, ln, exp.

Puis tracer une fonction usuelle translatée (la lecture de la translation doit être immédiate).

3 QUESTION DE COURS 2:

Exercice 1

« Dé-linéariser » $\cos{(n\theta)}$ ou $\sin{(n\theta)}$ pour $\theta \in \mathbf{R}$ et $n \in \mathbf{N}$. Soit le cas général, soit un cas particulier selon les volontés du colleur.

Exercice 2 (CCINP 84)

- 1) Donner la définition d'un argument d'un nombre complexe non nul (on ne demande ni l'interprétation géométrique, ni la démonstration de l'existence d'un tel nombre).
- 2) Soit $n \in \mathbb{N}^*$. Donner, en justifiant, les solutions dans \mathbf{C} de l'équation $z^n = 1$ et préciser leur nombre.
- 3) En déduire, pour $n \in \mathbf{N}^*$, les solutions dans \mathbf{C} de l'équation $(z+i)^n = (z-i)^n$ et démontrer que ce sont des nombres réels.

Exercice 3 (CCINP 89)

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose $z = e^{i\frac{2\pi}{n}}$.

- 1) On suppose $k \in [1, n-1]$. Déterminer le module et un argument du complexe $z^k - 1$.
- 2) On pose $S = \sum_{k=0}^{n-1} |z^k 1|$. Montrer que $S = \frac{2}{\tan \frac{\pi}{2n}}$.

4 QUESTION DE COURS 3 :

- 1) Soit E non vide muni d'un ordre total et $f: E \to F$ strictement croissante. Montrer que f est injective.
- 2) Montrer que la composée de deux injections est une injection.
- 3) Montrer que la composée de deux surjections est une surjection.
- 4) Montrer que f est bijective si, et seulement si elle admet une application réciproque.
- 5) Démontrer une propriété de l'image directe ou de l'image réciproque (croissance, union, intersection).

5 Exercices:

Les nombres complexes et la trigonométrie, pas encore sur les applications.